ChiSeL: Graph Similarity Search using Chi-Squared Statistics in Large Probabilistic Graphs

Shubhangi Agarwal[†], Sourav Dutta^{††}, Arnab Bhattacharya[†]

sagarwal@cse.iitk.ac.in, sourav.dutta2@huawei.com, arnabb@cse.iitk.ac.in

August, 2020 VLDB 2020, Tokyo, Japan (online)

[†]Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, INDIA
^{††}Huawei Research Centre, Dublin, IRELAND

Subgraph querying in large real-world graphs is challenging due to *uncertainty* of data.

• Subgraph isomorphism is NP-complete

FIGURE 1: GRAPH (WITH QUERY MANIFESTATION) FIGURE 2: QUERY

Subgraph querying in large real-world graphs is challenging due to *uncertainty* of data.

• Subgraph isomorphism is NP-complete Approximate Subgraph Matching

FIGURE 1: GRAPH (WITH QUERY MANIFESTATION) FIGURE 2: QUERY

Subgraph querying in large real-world graphs is challenging due to *uncertainty* of data.

- Subgraph isomorphism is NP-complete Approximate Subgraph Matching
- Automatically created knowledge bases e.g. StringDB, YAGO, DBPedia

FIGURE 1: GRAPH (WITH QUERY MANIFESTATION) FIGURE 2: QUERY

Subgraph querying in large real-world graphs is challenging due to *uncertainty* of data.

- Subgraph isomorphism is NP-complete *Approximate Subgraph Matching*
- Automatically created knowledge bases e.g. StringDB, YAGO, DBPedia

FIGURE 1: GRAPH

FIGURE 2: QUERY

Aim: Find the **top-k subgraphs** of G that are the **best approximate matches** of Q.

	Introduction	Challenges	@ VLDB 2020
Challenges			

- Best approximate match
 - 1. High existential probability
 - 2. High label and structural similarity

	Introduction	Challenges	@ VLDB 2020
Challenges			

- Best approximate match
 - 1. High existential probability captured through Possible World Semantics
 - 2. High label and structural similarity
- $2^{|E|}$ possible worlds! (|E| = #edges in G)

	Introduction	Challenges	@ VLDB 2020
Challenges			

- Best approximate match
 - 1. High existential probability captured through Possible World Semantics
 - 2. High label and structural similarity
- $2^{|E|}$ possible worlds! (|E| = #edges in G)

<u>CHISEL</u> (Chi-Squared Search in Large Probabilistic Graphs)

- Efficient integration of *possible world semantics (PWS) model* with label and structure match
- Similarity captured through *statistical significance*
- Return best approximately matching subgraphs

@ VLDB 2020

CHISEL

Steps

- 1. Indexes and probability computation *(Offline for G)*
- 2. Vertex pair construction
- 3. Similarity computation
- 4. Expand candidate vertex pairs

@ VLDB 2020

CHISEL – Step 1

Steps

- 1. Indexes and probability computation (Offline for G)
- 2. Vertex pair construction
- 3. Similarity computation
- 4. Expand candidate vertex pairs
- Labels-Vertices Inverted Index $A \rightarrow v_1, v_4$
- Expected Degree $\delta_{v_1} = \mathcal{E}[deg(v_1)]$ = 2.1

- Neighbor Labels Index $v_1 \rightarrow [\langle A, 0.8 \rangle, \langle B, 0.7 \rangle, \langle C, 0.6 \rangle]$
- Neighbor Label Probabilities $Pr(\#(A \in ne(v_1)) = k)$ $k \in \{0, 1, \ge 1\}$

Index construction for Q on the fly

CHISEL – Step 2

Steps

- 1. Indexes and probability computation *(Offline for G)*
- 2. Vertex pair construction
- 3. Similarity computation
- 4. Expand candidate vertex pairs

· Vertices with same labels

$$\mathcal{VP} = \{ \langle v_1, q_1 \rangle, \langle v_4, q_1 \rangle, \langle v_2, q_2 \rangle, \langle v_3, q_3 \rangle \}$$

$$A \qquad A \qquad B \qquad C$$

CHISEL – Step 3

Steps

- 1. Indexes and probability computation *(Offline for G)*
- 2. Vertex pair construction
- 3. Similarity computation
- 4. Expand candidate vertex pairs
- For each query triplet find the best triplet match in each possible world
- Use of χ^2 measure
- Query Triplet $\langle l_x, l_q, l_y \rangle$ $x, y \in \text{neighbor}(q)$ $q_1 \rightarrow \{\langle B, A, C \rangle, \langle C, A, D \rangle, \langle B, A, D \rangle\}$

Query triplet \longrightarrow **Best triplet match** \longrightarrow Compute χ^2 value

- s_0 : no instance of l_x and l_y exist in the neighborhood
- s_1 : exactly one of the labels, either l_x or l_y , exist in the neighborhood
- s_2 : at least one instance of both the labels exists

Query triplet \longrightarrow **Best triplet match** \longrightarrow Compute χ^2 value

For instance, for query triplet $\langle B, A, C \rangle$ in example,

Best Match - $\langle B, A, C \rangle$ Symbol, Pr(w) - $\langle s_2, 0.336 \rangle$

Figure 5: Sample world with two neighbors $\label{eq:product} \Pr(w) = 0.8 \times 0.7 \times (1-0.6) = 0.224$

Best Match - $\langle B, A, A \rangle$ Symbol, Pr(w) - $\langle s_1, 0.224 \rangle$

Query triplet \longrightarrow Best triplet match \longrightarrow Compute χ^2 value

Statistical significance (χ^2 statistic) to capture similarity

$$\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}$$

- Captures deviation of Observed value from Expected value
- Random distribution hypothesis
- Manifestation of Q in G is a rare event
- Matching subgraph \Rightarrow Higher χ^2

Query triplet \longrightarrow Best triplet match \longrightarrow Compute χ^2 value

Statistical significance (χ^2 statistic) to capture similarity

$$\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}$$

- Captures deviation of Observed value from Expected value
- Random distribution hypothesis
- Manifestation of Q in G is a rare event
- Matching subgraph \Rightarrow Higher χ^2

Enumerating all possible worlds - inefficient and impractical!

Efficient Integration of PWS

Offline

Neighbor Label Probabilities, $\mathbf{P}(\#\mathbf{l_x})$

- Captures probability distribution of labels in neighborhood
- P(#l_x = 0) → Probability that no instance of l_x exists as neighbor
- For $\#l_x \in 0, 1, \ge 1$

Efficient Integration of PWS

Offline

Neighbor Label Probabilities, $\mathbf{P}(\#\mathbf{l_x})$

- Captures probability distribution of labels in neighborhood
- P(#l_x = 0) → Probability that no instance of l_x exists as neighbor
- For $\#l_x \in 0, 1, \ge 1$

Expected Probability of Symbols

• Probability that a neighbor has label *l* is $\frac{1}{|\mathcal{L}|}$, assuming $|\mathcal{L}|$ labels

•
$$P_e(s_0) = \left(\left(1 - \frac{1}{|\mathcal{L}|}\right)^{\delta} \right)^2$$

- PWS captured through $\,\delta\,$

Efficient Integration of PWS

Offline

Neighbor Label Probabilities, $\mathbf{P}(\#\mathbf{l_x})$

- Captures probability distribution of labels in neighborhood
- P(#l_x = 0) → Probability that no instance of l_x exists as neighbor
- For $\#l_x \in 0, 1, \ge 1$

Online

- $P(s_0) \rightarrow$ no label match in neighbors
- $O[s_0] = \sum_{triplets} P(s_0)$
- $O[s_1], O[s_2]$ likewise

Expected Probability of Symbols

• Probability that a neighbor has label *l* is $\frac{1}{|\mathcal{L}|}$, assuming $|\mathcal{L}|$ labels

•
$$P_e(s_0) = \left(\left(1 - \frac{1}{|\mathcal{L}|}\right)^{\delta} \right)^2$$

- PWS captured through $\,\delta$

•
$$E[s_0] = \sum_{triplets} P_e(s_0)$$

• Similarly, $E[s_1], E[s_2]$

Query triplet \longrightarrow **Best triplet match** \longrightarrow Compute χ^2 value

- A distribution over s_0, s_1 and s_2 for each triplet across worlds
- Sum over all triplets to get observed values for the vertex pair
- Compute similarity for each vertex pair as

$$\chi^{2}_{\langle v,q \rangle} = \sum_{i=0}^{2} \frac{(O[s_i] - E[s_i])^2}{E[s_i]}$$

Expand Candidate Vertex Pairs – Step 4

- · Greedy expansion over vertex pairs
 - Stop when no more query vertices or cannot expand
- Prefer neighbors with
 - High χ^2 value
 - Large edge probability

Expand Candidate Vertex Pairs – Step 4

- · Greedy expansion over vertex pairs
 - Stop when no more query vertices or cannot expand
- Prefer neighbors with
 - High χ^2 value
 - Large edge probability

Ranking answer subgraph s_i

• $\chi^2(s_i) = \text{Sum of } \chi^2 \text{ of constituting vertex pairs}$

Expand Candidate Vertex Pairs – Step 4

- Greedy expansion over vertex pairs
 - Stop when no more query vertices or cannot expand
- Prefer neighbors with
 - High χ^2 value
 - Large edge probability

Ranking answer subgraph s_i

- $\chi^2(s_i) = \text{Sum of } \chi^2 \text{ of constituting vertex pairs}$
- · Sort into groups by size of subgraph in descending order
- Sort groups internally by $\chi^2(s_i)$ in descending order
- Top-1 answer has highest cardinality and highest χ^2 in that group

Datasets

Dataset	# Vertices	# Edges	# Labels	Avg. Degree
PPI-complete	7.6M	1.2B	0.2M	316
PPI-small	12.0K	10.7M	2.4K	1789
YAGO	4.3M	11.5M	4.0M	5
IMDb	3.0M	11.0M	3.0M	7

FIGURE 6: CHARACTERISTICS OF DATASETS USED

- STRING DB: Protein-protein interaction network, v10.5 (PPI-complete)
 - PPI-small (sampled from PPI-complete)
- YAGO: Open source knowledge graph
 - Entities extracted from Wiki, WordNet, GeoNames
- IMDb: Deterministic dataset with information on actors, directors etc.
 - Random edge-probabilities assigned
- Queries: Exact and Noisy

TABLE 1: OVERALL PERFORMANCE COMPARISON FOR TOP-10 SUBGRAPHS

Mathad	Y	YAGO		IMDb		PPI-small		PPI-complete	
Method Acc.	Acc.	Time (s)	Acc.	Time (s)	Acc.	Time (s)	Acc.	Time (s)	
CHISEL	0.89	1.62	0.87	0.05	0.96	16.69	0.84	0.14	
PBound	0.26	560.92	0.57	101.95	0.29	3134.09	Tii	me-out	
Fuzzy	0.61	1.82	0.62	2.19	0.01	13970.94	Ti	me-out	

- *PBound*¹ tree decomposition based approach
- *Fuzzy*² path decomposition based approach
- Averaged across all queries

¹Gu et al. 2016, WWW, pages 755-782,

²Li et al. 2019, Fuzzy Sets and Systems, 376:106-126

Real-World Use Case: String DB

FIGURE 7: EVALUATION OF REAL QUERIES ON PPI-COMPLETE

• *NAGA*¹: Neighbour Aware Greedy Graph Search

¹ Dutta et al. 2017, WWW, pages 1281-1290

Probabilistic Graph Variants

CHISEL can be extended to incorporate following problem settings:

- Edge labeled graphs
- Noisy labels
- Uncertain vertices
- Label uncertainty
- Uncertain query graphs

Conclusions

- Approximate searching is necessary for large probabilistic graphs
- CHISEL is a threshold-free approach
 - Scales well for large probabilistic graphs
 - Efficiently integrates possible world semantics
- The χ^2 statistic is a powerful framework to capture subgraph similarity
- CHISEL is extendable to different variants of uncertain scenarios

The source code of CHISEL is available from https://github.com/Shubhangi-Agarwal/ChiSeL.

Conclusions

- Approximate searching is necessary for large probabilistic graphs
- CHISEL is a threshold-free approach
 - Scales well for large probabilistic graphs
 - Efficiently integrates possible world semantics
- The χ^2 statistic is a powerful framework to capture subgraph similarity
- CHISEL is extendable to different variants of uncertain scenarios

THANK YOU!

Questions?

Answers!

The source code of CHISEL is available from https://github.com/Shubhangi-Agarwal/ChiSeL.

PBound¹

- Performs maximal subgraph matching
- Incrementally computes similarity probabilities
- Prune using probability upper bounds

*Fuzzy*²

- Path-based graph decomposition
- K-partite based path-joining techniques

¹Gu *et al.* 2016, International Conference on World Wide Web (WWW) ²Li *et al.* 2019, Fuzzy Sets and Systems

FIGURE 8: ACCURACY COMPARISON OF DIFFERENT ALGORITHMS OVER ALL DATASETS.

FIGURE 9: RUNTIME COMPARISON OF DIFFERENT ALGORITHMS OVER ALL DATASETS.

Exact Queries (exact)

- · Constructed from the datasets
- Randomly select a vertex
- Explore neighborhood through random walk
- Stop if q vertices visited
- Subgraph induced from visited vertices *exact* query

Noisy Queries (noisy)

- Constructed from *exact*
- Insert noise in *exact* queries
- Randomly insert, delete or replace edges
- Stop when #operations are one-third of total edges

Per Dataset	Other datasets	PPI-complete		
Query graph size	$\{3, 5, \dots, 13\}$	$\{3, 5, \dots, 25\}$		
#Queries of each type	20	20		
Total #Queries	2 * 6 * 20 = 240	2 * 12 * 20 = 480		

TABLE 2: CHARACTERISTICS OF QUERIES