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Introduction Motivation and Aim @ VLDB 2020

Introduction

Subgraph querying in large real-world graphs is challenging due to
uncertainty of data.

FIGURE 1: GRAPH

(WITH QUERY MANIFESTATION)
FIGURE 2: QUERY

• Subgraph isomorphism is NP-complete

Approximate Subgraph Matching

• Automatically created knowledge bases
e.g. StringDB, YAGO, DBPedia

Aim: Find the top-k subgraphs of G that are the best approximate matches of Q.
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Introduction Challenges @ VLDB 2020

Challenges

• Best approximate match
1. High existential probability

– captured through Possible World Semantics

2. High label and structural similarity

• 2|E| possible worlds! (|E| = #edges in G)

CHISEL (Chi-Squared Search in Large Probabilistic Graphs)

• Efficient integration of possible world semantics (PWS) model with
label and structure match

• Similarity captured through statistical significance

• Return best approximately matching subgraphs
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Approach Example @ VLDB 2020

CHISEL

– Step 3

v1,A
v2,B

v3,C
v4,A

Vertex   Label          Neighbors
    v1   A    (A,0.8), (B,0.7), (C,0.6)
    v2   B (A,0.7), (A,0.5), (C,0.4)
    v3   C (A,0.6), (A,0.3), (B,0.4)
    v4   A (A,0.8), (B,0.5), (C,0.3)

Vertex Label Neighbors   Triplet-list
    q1    A    B,C,D       (B,A,C), (C,A,D), (B,A,D)
    q2    B      A,C      (A,B,C)
    q3    C      A,B      (B,C,A)
    q4    D        A             (A,D,ϕ)

q1,A

q4,D

q2,B q3,C

G

Q

0.8

0.7

0.4

0.3

0.5

0.6

FIGURE 3: EXAMPLE

Steps

1. Indexes and probability computation
(Offline for G)

2. Vertex pair construction

3. Similarity computation

4. Expand candidate vertex pairs
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CHISEL – Step 1
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FIGURE 3: EXAMPLE

Steps

1. Indexes and probability computation
(Offline for G)

2. Vertex pair construction

3. Similarity computation

4. Expand candidate vertex pairs

• Labels-Vertices Inverted Index
A → v1, v4

• Expected Degree
δv1 = E[deg(v1)]

= 2.1

• Neighbor Labels Index
v1 → [⟨A, 0.8⟩, ⟨B, 0.7⟩, ⟨C, 0.6⟩]

• Neighbor Label Probabilities
Pr

(
#
(
A ∈ ne(v1)

)
= k

)
k ∈ {0, 1,≥ 1}

Index construction for Q on the fly
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Approach Example @ VLDB 2020

CHISEL – Step 2
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FIGURE 3: EXAMPLE

Steps

1. Indexes and probability computation
(Offline for G)

2. Vertex pair construction

3. Similarity computation

4. Expand candidate vertex pairs

• Vertices with same labels

VP = {⟨v1, q1⟩, ⟨v4, q1⟩, ⟨v2, q2⟩, ⟨v3, q3⟩}

A A B C
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FIGURE 3: EXAMPLE

Steps

1. Indexes and probability computation
(Offline for G)

2. Vertex pair construction

3. Similarity computation

4. Expand candidate vertex pairs

• For each query triplet find the best triplet match in each possible world

• Use of χ2 measure

• Query Triplet - ⟨lx, lq, ly⟩ x, y ∈ neighbor(q)
q1 → {⟨B,A,C⟩, ⟨C,A,D⟩, ⟨B,A,D⟩}
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Approach Similarity Computation @ VLDB 2020

Similarity Computation (using χ2 Statistic)

Query triplet −→ Best triplet match −→ Compute χ2 value

• s0: no instance of lx and ly exist in the neighborhood

• s1: exactly one of the labels, either lx or ly , exist in the neighborhood

• s2: at least one instance of both the labels exists
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Approach Similarity Computation @ VLDB 2020

Similarity Computation (using χ2 Statistic)

Query triplet −→ Best triplet match −→ Compute χ2 value

For instance, for query triplet ⟨B,A,C⟩ in example,

v1,A
v2,B

v3,C
v4,A

0.8

0.7

0.6

FIGURE 4: SAMPLE WORLD WITH ALL NEIGHBORS

PR(W) = 0.8 × 0.7 × 0.6 = 0.336

Best Match - ⟨B,A,C⟩
Symbol, Pr(w) - ⟨s2, 0.336⟩

v1,A
v2,B

v3,C
v4,A

0.8

0.7

0.6

FIGURE 5: SAMPLE WORLD WITH TWO NEIGHBORS

PR(W) = 0.8 × 0.7 × (1 − 0.6) = 0.224

Best Match - ⟨B,A,A⟩
Symbol, Pr(w) - ⟨s1, 0.224⟩
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Approach Similarity Computation @ VLDB 2020

Similarity Computation (using χ2 Statistic)

Query triplet −→ Best triplet match −→ Compute χ2 value

Statistical significance (χ2 statistic) to capture similarity

χ2 =
∑
i

(Oi − Ei)
2

Ei

• Captures deviation of Observed value from Expected value

• Random distribution hypothesis

• Manifestation of Q in G is a rare event

• Matching subgraph ⇒ Higher χ2

Enumerating all possible worlds – inefficient and impractical!
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Approach Similarity Computation @ VLDB 2020

Efficient Integration of PWS

Offline

Neighbor Label Probabilities, P(#lx)

• Captures probability distribution of
labels in neighborhood

• P (#lx = 0) → Probability that no
instance of lx exists as neighbor

• For #lx ∈ 0, 1,≥ 1

Expected Probability of Symbols

• Probability that a neighbor has
label l is 1

|L| , assuming |L| labels

• Pe(s0) =

((
1− 1

|L|

)δ
)2

• PWS captured through δ

Online
• P (s0) → no label match in neighbors

• O[s0] =
∑

triplets

P (s0)

• O[s1], O[s2] likewise

• E[s0] =
∑

triplets

Pe(s0)

• Similarly, E[s1], E[s2]
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Approach Similarity Computation @ VLDB 2020

Similarity Computation (using χ2 Statistic)

Query triplet −→ Best triplet match −→ Compute χ2 value

• A distribution over s0, s1 and s2 for each triplet across worlds

• Sum over all triplets to get observed values for the vertex pair

• Compute similarity for each vertex pair as

χ2
⟨v,q⟩ =

2∑
i=0

(O[si]− E[si])
2

E[si]
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Approach Expansion and Ranking @ VLDB 2020

Expand Candidate Vertex Pairs – Step 4

• Greedy expansion over vertex pairs
− Stop when no more query vertices or cannot expand

• Prefer neighbors with
− High χ2 value
− Large edge probability

Ranking answer subgraph si

• χ2(si) = Sum of χ2 of constituting vertex pairs

• Sort into groups by size of subgraph in descending order

• Sort groups internally by χ2(si) in descending order

• Top-1 answer has highest cardinality and highest χ2 in that group
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Results Experimental Setup @ VLDB 2020

Experimental Setup

Datasets

FIGURE 6: CHARACTERISTICS OF DATASETS USED

• STRING DB: Protein-protein interaction network, v10.5 (PPI-complete)
− PPI-small (sampled from PPI-complete)

• YAGO: Open source knowledge graph
− Entities extracted from Wiki, WordNet, GeoNames

• IMDb: Deterministic dataset with information on actors, directors etc.
− Random edge-probabilities assigned

• Queries: Exact and Noisy
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Results Overall Performance @ VLDB 2020

Results

TABLE 1: OVERALL PERFORMANCE COMPARISON

FOR TOP-10 SUBGRAPHS

Method
YAGO IMDb PPI-small PPI-complete

Acc. Time (s) Acc. Time (s) Acc. Time (s) Acc. Time (s)

CHISEL 0.89 1.62 0.87 0.05 0.96 16.69 0.84 0.14
PBound 0.26 560.92 0.57 101.95 0.29 3134.09 Time-out
Fuzzy 0.61 1.82 0.62 2.19 0.01 13970.94 Time-out

• PBound1 – tree decomposition based approach

• Fuzzy2 – path decomposition based approach

• Averaged across all queries

1Gu et al. 2016, WWW, pages 755-782,
2Li et al. 2019, Fuzzy Sets and Systems, 376:106-126
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Results Overall Performance @ VLDB 2020

Real-World Use Case: String DB

(a) String DB Query (b) CHISEL (c) NAGA

FIGURE 7: EVALUATION OF REAL QUERIES ON PPI-COMPLETE

• NAGA1: Neighbour Aware Greedy Graph Search

1 Dutta et al. 2017, WWW, pages 1281-1290
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Special Cases Extendable Framework @ VLDB 2020

Probabilistic Graph Variants

CHISEL can be extended to incorporate following problem settings:

• Edge labeled graphs

• Noisy labels

• Uncertain vertices

• Label uncertainty

• Uncertain query graphs

Agarwal, Dutta, Bhattacharya IIT Kanpur; Huawei Probabilistic Graph Search using Chi-Square Statistics 12 / 13



Conclusions @ VLDB 2020

Conclusions

• Approximate searching is necessary for large probabilistic graphs

• CHISEL is a threshold-free approach

− Scales well for large probabilistic graphs

− Efficiently integrates possible world semantics

• The χ2 statistic is a powerful framework to capture subgraph similarity

• CHISEL is extendable to different variants of uncertain scenarios

THANK YOU!

Questions?
Answers!

The source code of CHISEL is available from https://github.com/Shubhangi-Agarwal/ChiSeL.
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Experimental Setup - Benchmarks

PBound1

• Performs maximal subgraph matching

• Incrementally computes similarity probabilities

• Prune using probability upper bounds

Fuzzy2

• Path-based graph decomposition

• K-partite based path-joining techniques

1Gu et al. 2016, International Conference on World Wide Web (WWW)
2Li et al. 2019, Fuzzy Sets and Systems



Efficiency Results

FIGURE 8: ACCURACY COMPARISON OF DIFFERENT ALGORITHMS OVER ALL DATASETS.
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FIGURE 9: RUNTIME COMPARISON OF DIFFERENT ALGORITHMS OVER ALL DATASETS.
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Experimental Setup - Query dataset

Exact Queries (exact)

• Constructed from the datasets

• Randomly select a vertex

• Explore neighborhood through
random walk

• Stop if q vertices visited

• Subgraph induced from visited
vertices - exact query

Noisy Queries (noisy)

• Constructed from exact

• Insert noise in exact queries

• Randomly insert, delete or replace
edges

• Stop when #operations are one-third
of total edges

Per Dataset Other datasets PPI-complete
Query graph size {3, 5, . . . , 13} {3, 5, . . . , 25}

#Queries of each type 20 20

Total #Queries 2 ∗ 6 ∗ 20 = 240 2 ∗ 12 ∗ 20 = 480

TABLE 2: CHARACTERISTICS OF QUERIES
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