

GRAPHREACH: Position-Aware Graph Neural Network using Reachability Estimations

Sunil Nishad^{*a*,1}, Shubhangi Agarwal^{*a*,2}, Arnab Bhattacharya^{*a*,3}, Sayan Ranu^{*b*,4} ^aIndian Institute of Technology Kanpur, India, ^bIndian Institute of Technology Delhi, India

Objectives

An inductive GNN model that outputs node embeddings that are:

- Holistic: Maximum absorption of graph knowledge
- Meaningful: Real-world semantics are attended to
- Robust: Small alteration to graph does not affect embeddings

Motivation

Figure: Traditional vs. position-aware GNNS.

- Most GNNS fail to distinguish nodes with similar neighbourhoods
- Traditional GNNS rely on neighborhood information or are transductive
- May be better in exploiting neighborhood feature distribution
- P-GNN [1] encapsulates position/ location of a node using shortest paths

Contributions

GRAPHREACH: A node embedding learning model based on

- Reachability estimations between anchors and nodes, to aid incorporation of all paths, and
- Strategic anchor selection to cover all nodes and maximize differentiability of output embeddings, and is, thus,
- **Inductive**, i.e., can cater to previously unseen nodes and edges, and
- Resilient to adversarial attacks.

GRAPHREACH

Figure: GRAPHREACH architecture

Anchor Selection and Reachability Estimation

- Conduct multiple random walks from each node v.
- Form bipartite graphs from these random walks.
- Compute marginal reachability of vertices.
- Select k vertices with highest scores as anchors $\mathcal{A} = (a_1, \dots, a_k)$.
- **Reachability estimation** $s(v, a_i)$ is average #times node v is visited across all walks from anchor a_i .

Message Computation and Aggregation

• Message Computation function: Combine node attributes (h^{l}) and position information.

$$\mathcal{F}\left(\mathbf{v}, a, \mathbf{h}_{v}^{\prime}, \mathbf{h}_{a}^{\prime}\right) = \left(\left(\mathbf{s}\left(\mathbf{v}, a\right) \times \mathbf{h}_{v}^{\prime}\right) \parallel \left(\mathbf{s}\left(a, v\right) \times \mathbf{h}_{a}^{\prime}\right)\right)$$

- Reachability estimations used in both directions to address asymmetricity.
- Message Matrix \mathcal{M}^{l} for node v comprises linearly transformed messages from all anchors.

$$\mathcal{M}_{v}^{l} = \left(\bigoplus_{a \in \mathcal{A}} \mathcal{F}\left(v, a, \mathbf{h}_{v}^{l}, \mathbf{h}_{a}^{l}\right) \right) \cdot \mathbf{W}_{\mathcal{M}}^{l}$$

• Aggregator: Mean-pooling.

$$\mathcal{S}^{M}(\mathcal{M}_{v}^{l}) = \frac{1}{k} \sum_{i=1}^{k} \mathcal{M}_{v}^{l}[i]$$

Output Layer : Transform \mathcal{M}_{k}^{L} to output k-dimensional node embeddings.

 $\mathbf{z}_{v} \leftarrow \sigma(\mathcal{M}_{u}^{L}, \mathbf{W}_{Z}) \forall v$

Experimental Results

GRAPHREACH is better than other architectures in real-world datasets

Models	Email	Protein
GNN*	0.545 ± 0.012	0.528 ± 0.011
P-GNN	0.640 ± 0.029	0.631 ± 0.175
GRAPHREACH	0.949 ± 0.009	0.904 ± 0.003

Models	Communities	PPI
GNN*	0.692 ± 0.049	0.803 ± 0.005
P-GNN	0.985 ± 0.008	0.808 ± 0.003
GRAPHREACH	0.991 ± 0.003	0.810 ± 0.002

(a) Pairwise Node Classification (PNC)

(b) Link Prediction (LP)

```
Table: ROC AUC (GNN*: Best accuracy obtained among GCN [2], GRAPHSAGE [3], GIN [4] and GAT [5])
```

• GRAPHREACH is more robust against graph modifications (adversarial attacks)

Teel		P-GNN	1	C	GraphRe	ACH
Task	Bf	Af	Δ	Bf	Af	Δ
PNC	0.92	0.82	-0.10	1.00	0.98	-0.02
LP	1.00	0.89	-0.11	1.00	1.00	-0.00

Bf: ROC AUC before collusion Af: ROC AUC after collusion Δ : Change in accuracy due to collusion

Table: Robustness to adversarial attacks. (Dataset: Communities)

• GRAPHREACH utilizes structural information the best in absence of node features

Tack	Dataset	G١	IN*	P-0	Gnn	GRAPH	IREACH
Idak	Dataset	S+T	S	S+T	S	S+T	S
NC	CoRA	0.92	0.52	0.73	0.50	0.84	0.86
NC	CiteSeer	0.82	0.52	0.73	0.55	0.75	0.71

Table: ROC AUC (Traditional GNNs vs Position-aware GNNs).

- Ablation: Mean pooling is simpler but almost as good as attention aggregators.
- **Parameters**: Small number of random walks of short/medium lengths were enough.

References

[1] P-GNN: ICML 2019; [2] GCN: ICLR, 2017; [3] GRAPHSAGE: NIPS, 2017; [4] GIN: ICLR, 2019; [5] GAT: ICLR, 2018.

- (2) For more details
 - Scan the QR codes. \leftarrow arXiv paper github code – If you have any questions, you can reach out to us! ¹snishad@cse.iitk.ac.in,²sagarwal@cse.iitk.ac.in, arXiv GitHub ³arnabb@cse.iitk.ac.in, ⁴sayanranu@cse.iitd.ac.in

(1)

(4)

(3)