

HyGraph Project – DFG/ANR funded project with collaboration between Leipzig University and Lyon University

Mouna Ammar, Shubhangi Agarwal, Angela Bonifati, Erhard Rahm

TGD Workshop 26/03/2025

Motivation - The Missing Bridge between Graphs and Time HyGraph series

- Real world dataset existing in both graph and time series forms but separately
- The need to integrate relationships, temporal changes, and evolving patterns in one single system.

Motivation - The Missing Bridge between Graphs and Time series

- Existing approaches are all task specific
- Lack of a **unified**, **general** approach to transform time series and graph representations
- HyGraph:
- Offer a range of configurable transformations.
- Make the edge-creation rule flexible.
- Perform queries that join temporal patterns with graph patterns

[1] Donato Tiano et al.. 2021. FeatTS: Feature-based Time Series Clustering. In SIGMOD '21: International Conference on
 [2] E. Bollen et al. 2024. Managing Data of Sensor-Equipped Transportation Networks using Graph Databases. GeoscientificInstrumentation,

HyGraph Vision

HyGraph Data Model

HyGraph Tuple HG = (V, E, S, TS, K, N):

- Vertices (V = Vpg U Vts): Property Graph vertices and Time Series vertices.
- Edges (E= Epg ∪ Ets): Property Graph edges and Time Series edges).
- Subgraphs (S): A collection of specific vertices and edges evolving over time
- Time Series (TS): The series of data points over time connected to both vertices and edges.
- Properties (K, N): Static and dynamic properties linked to different Vpg, Epg, and S.

HyGraph Data Model example – Bike Sharing use case

HyGraph package - System Architecture

HyGraph open source python Library https://pypi.org/project/hygraph-core/

UNIVERSITÄT TGD Workshop

UNIVERSITÄT TGD Workshop

Main modules

Timeseries_op Module

UNIVERSITÄT TGD Workshop

Main modules

HygraphQuery Module

HyGraphQuerying

+hygraph

- + node_matches
- + edge_matches
- + pattern
- + conditions
- + return_elements
- + groupings
- + aggregations
- + ordering
- + limit_count
- + subquery_results

UNIVERSITÄT TGD Workshop

Main modules

HyGraph Operators

Operator	Output
Hybrid Pattern Matching	HyGraph elements matching the defined hybrid pattern.
Temporal Subgraph	Create a subgraph with evolving nodes and edges.
Graph similarity (GraphSim)	Constructs a graph based on correlated time-series pattern.
Timeseries metrics generation (<i>ExtractTS</i>)	Edge aggregation, membership changes, graph metrics changes.

From Time series to HyGraph - Graph similarity on top of time series data (*GraphSim*)

- Feature Extraction: basic statistical features (e.g., mean, standard deviation, etc)
- Feature Similarity: compute_feature_similarity computes the similarity between the feature vectors of two time series.
- Shape Similarity: similarity functions (e.g., euclidean_distance).
- Edge Creation: if avg (similarity) > threshold, edge created:
 - For **PGEdge**, similarities are stored as static properties.
 - For **TSEdge**, similarities over time stored as a TimeSeries object.

From Time series to HyGraph - Graph similarity on top of time series data (*GraphSim*)

- Goal. Convert time-series patterns into graph
- How it works. Given a set of time series

$$TS_i = \{x_1^i x_2^i, ..., x_T^i\}, TS_j = \{x_1^j x_2^j, ..., x_T^j\}$$

Compute pairwise similarity S(i,j) using one of the similarity technics (e.g., DTW) Define an edge creation threshold T

Why?

Applying graph operators on time series data (e.g.,community detection)

From Time series to HyGraph - Graph similarity on top of time series data (*GraphSim*)

HyGraph system

From Time series to HyGraph - Graph similarity on top of time series data – Stock Market use case

```
from hygraph_core.construct_graph import (
                                                                          Importing the function
    build_timeseries_similarity_graph,
                                                                          from the package
    compute similarity timeseries
threshold = 0.40
node_label = "BikeStation"
                           # Label for the newly created TSNodes
                                      # Variable name in case of a multivariate time seriees
variable_name = "num_bike_"
hygraph = build_timeseries_similarity_graph(
    time_series_list=time_series_list, #list of time series data
    threshold=threshold,
                                      #Similarity threshold for edge creation
    node_label=node_label,
                                      #label of teh created node
    ts_attr_list=ts_attr_list,
                                      #metadata about the time-series data
    variable_name=variable_name,
    hygraph=hygraph,
    shape_similarity_metric='correlation',
    feature similarity metric='cosine',
    similarity_weights=None,
    edge_type='PGEdge'
                                      #type of edge created
```

From Time series to HyGraph - Graph similarity on top of time series data – Stock Market use case

 Node data 							
Node ID	Label	тѕ	Start Time	End Time	Region ID	NodelD	Coordinate s
240e9fee- cee3	BikeDemande	#530e9fce- dee4	2015-01-01	2124-04-10	71	5d34te- Der7	(40.7036, - 74.0131)
B53df64c- dse5	BikeDemand	#D70e9fee- coe8	2014-02-03	2124-04-10	65	4r34te- ruic9	(40.7036, 74.0131
Edge deta							

Edge data

Edge ID	From	То	Start Time	End Time	Total Similarity Score	Shape Similarity Score	Feature Similarity Score
350e9fee-cte3	B53df64c -dse5	240e9fee- cee3	2024-01-01	2024-04-10	0.93	0.94	0.92
U33df64c-dre5	240e9fee -cee3	738e9fee- uee7	2024-01-01	2024-04-10	0.95	0.94	0.96

HyGraph Query - Most connected domain to 'Tech' domain

From Graph To HyGraph – Extract Time series from Graph (ExtractTS)

- Goal. Convert graph dynamics into time-series data
- How it works. Given a time-evolving Graph Gt, extract time series for a node, an edge, or a subgraph

$$TS_i = f(G_t)$$

Where f can be:

- Aggregated edge values
- Node degree evolution
- Aggregated nodes and edges for a subgraph

Why?

- Further analysis of graph metrics (e.g., trends in node degree)
- Optimization (Graph summarization)

From Graph To HyGraph – Extract Time series from Graph (ExtractTS)

Aggregate edges of same Station source and target

Example: Extracting Time series for an evolving Subgraph

Similar nodes are grouped in the same Subgraph

Example: Extracting Time series for an evolving Subgraph

Similar nodes are grouped in the same Subgraph

From Graph To HyGraph – Extract Time series from Graph (ExtractTS)

HyGraph system

From Graph To HyGraph – Extract Time series from Graph (ExtractTS)

Conclusion

- GraphSim: Extracts graph structures from time-series similarity (e.g., linking entities based on evolving correlations).
- ExtractTS: Converts graph dynamics into time-series representations (e.g., tracking centrality over time).

Open Challenges

- Improve scalability of the operators
- Extend GraphSim by integrating ML-based embeddings
- Support path-based time-series extraction
- Learning-Based TSExtract (Auto-Extract Meaningful Time-Series)

UNIVERSITÄT

LEIP7IG

Thanks for your attention !

Contact us to collaborate or to suggest a use case

Visit our website ! https://hygraph.net/

