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The rapid progress in internet connectivity and the continual evolution of data

storage and sharing techniques have substantially widened access to vast amounts

of information. This surge in data availability is especially evident in the prolif-

eration of linked data across diverse domains such as social networks, chemoinfor-

matics, bioinformatics, and road networks. This expanding landscape underscores

the imperative of harnessing the power of graphs as an instrumental means towards

enhanced comprehension and deeper insights. Graphs provide a strong foundation

for analyzing interconnected networks and can be automatically created by extract-

ing entities and relationships. A labeled graph is a way of representing data where

entities are modeled by nodes with associated labels, and their relationships are

depicted by edges or links between them.

Graph mining is an important field of research for efficiently analyzing large

real-world graphs. To extract useful information from graphs or networks various

data mining techniques are applied to graphs, like identifying clusters and mining

frequent patterns. A popular subfield of graph mining, Subgraph querying, focuses

on identifying all occurrences of a specific subgraph pattern in a larger graph or a

set of graphs. The goal is to identify specific subgraphs of interest, which can help
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in answering specific questions about the graph or verifying the presence of a known

structure. For instance, the presence of a substructure in a chemical compound can

help us understand its properties and behavior.

The applications of subgraph querying across a wide range of domains and over

large amounts of data encourage the development of efficient approaches for label

and structural pattern matching on large graphs. As subgraph isomorphism is NP-

complete, efficient heuristics have been proposed. However, in certain cases the

graph may have missing labels or edges, making it unsuitable to apply exact graph

querying paradigms. Technological advancements have made possible the automatic

construction of graphs from raw data. However, such graph constructing models

assign a probability value or confidence score to the extracted entities or relationships

or their attributes. In such a scenario, an exact subgraph match may not exist and

an approximate subgraph match may be more suitable.

Approximate subgraph matching (ASM) involves finding subgraph patterns in a

larger input graph that are similar to a given subgraph pattern, generally referred

to as a query, but not necessarily identical. This provides more flexibility and

robustness in graph analysis and enables the detection of subgraphs that may have

different labels, sizes, or shapes. Applications of ASM range from recommendation

systems to medical diagnostics based on symptom-disease association.

Various similarity measures can be used to compute the degree of similarity be-

tween the query graph pattern and subgraphs in the input graph, such as graph

edit distance, maximum common subgraph or graph based statistical measures like

degree distribution. However, methods based on such similarity measures commonly

define application dependent thresholds. Moreover, if the input graph is probabilis-

tic, it may be necessary to establish an acceptable probability threshold for existence.

Determining an appropriate threshold is necessary to capture important patterns,

however, this process can be challenging, especially in cases where the underlying

distribution of data is unknown or the data is noisy.

In this work, we address this issue and propose statistical significance based sub-
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graph querying methods for both deterministic and probabilistic graphs. Statiscal

significance measures like the Pearson’s chi-squared statistic allows to integrate the

label and the topological similarity of a subgraph as well as the associated proba-

bilities. Another widespread way is the use of neural network-based models to map

the input subgraphs and the query to a feature space and compare the embedded

vectors to search for answer retrieval. As the embeddings of the graphs are often ob-

tained by aggregating the embeddings of the constituent nodes, we present a graph

neural network for generating node embedding vectors that capture global position

of the nodes in the context of the graph with respect to a chosen set of nodes, called

anchors.

We propose two novel chi-squared based approaches, VerSaChI and ChiSeL, to

search for approximate subgraph patterns in deterministic and probabilistic input

graphs, respectively. VerSaChI computes a similarity of the neighborhood until

two-hops and uses Chebyshev’s inequality along with χ2 measure. On the other

hand, ChiSeL takes into account the possible world semantics while avoiding enu-

meration of all possible instantiations of the (sub)graph. We also conduct a study

using VeNoM, a variant of an existing ASM approach, by parametrizing the depth

and breadth of the neighborhood considered. We also discuss GraphReach, a ran-

dom walk based position-aware graph neural network. It uses a diversified anchor

selection algorithm for a more meaningful node embedding. Extensive experiments

demonstrate the robustness of various methods and showcase their efficacy on dif-

ferent datasets.
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Chapter 1

Introduction

There has been a significant increase in linked open data, social communities, and

interconnected networks on the World Wide Web. The data available is huge and

heterogeneous. For better understanding and analysis, it is best to visualize and

represent such large data using a labeled graph, where entities are modeled by nodes

with associated labels and their relationships are depicted by edges or links between

them. Graphs form a strong foundation for various domains like social networks,

protein and chemical interaction data, bioinformatics, route planning, etc. With

the advancement in learning techniques, graphs can be created automatically by

extracting entities and relationships, YAGO2 (Suchanek et al., 2007) and DBpedia

(Auer et al., 2007) are some examples of automatically created knowledge graphs.

Over the years, researchers have developed various querying and mining tech-

niques to study patterns and properties of graph data. This area of research is

popularly known as graph mining. A subfield of graph mining is subgraph querying,

also known as subgraph matching. It focuses on identifying all occurrences of a spe-

cific subgraph pattern in a larger graph or a set of graphs. A subgraph is a smaller

graph that can be found as a connected substructure in a larger graph. The goal

of subgraph querying is to identify specific subgraphs of interest, which can help in

answering specific questions about the graph or verifying the presence of a known

structure. Subgraph querying is useful in various domains, including social network

analysis, bioinformatics, chemical informatics, question-answering and image pro-
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cessing. For example, in social network analysis, subgraph querying can be used to

find all instances of a specific network motif or structure, such as a triangle or a

clique, which can help in identifying important features of the network. In bioinfor-

matics, subgraph querying can be used to search for specific patterns in protein or

gene interaction networks, which can help in understanding the biological functions

of these molecules.

The applications of subgraph querying across a wide range of domains and over

large amounts of data encourage the development of efficient approaches for label

and structural pattern matching on large graphs (Aggarwal and Wang, 2010). A

widely studied approach is the extraction of a deterministic query graph from a large

graph with which it shares structural similarity. The label space is shared as well.

Conventionally, a query graph is a set of related entities and relationship-based

topology where entities, optionally, may have attributes associated. Traditional

querying approaches scan the graph data for an exact match to this query pattern

graph and are based on graph isomorphism. However, graph isomorphism has been

shown to be quasi-polynomial (Babai, 2016), and subgraph isomorphism is known to

be NP-complete (Cook, 1971). Given the infeasibility of the exact label and struc-

tural matching models, researchers have explored heuristics for efficient subgraph

querying Jüttner and Madarasi (2018); Chen et al. (2018); Han et al. (2019).

Further, many times the data obtained from various sources may have missing

labels or edges. This can be due to various reasons, multiple data-source merg-

ing (Lian et al., 2016), privacy-preserving perturbation (Boldi et al., 2012) or merely

due to human judgment error and bias. Among other reasons, automatically created

graphs can be inherently uncertain as knowledge graph construction models gener-

ally assign a confidence score to the extracted entities and relationships. One of the

ways to capture this uncertainty in data is to model it through probabilistic graphs,

where a value is assigned to entities, edges or attributes to quantify their probabil-

ity of existence. The noisy and non-deterministic nature of real-world graphs makes

it unsuitable to apply exact graph querying paradigms. Instead, approximate sub-
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graph matching techniques are necessary to handle queries in a robust and real-time

manner.

1.1 Approximate Subgraph Matching

Approximate subgraph matching or ASM is a variant of subgraph matching that

involves finding subgraphs in a larger input graph that are similar to a given sub-

graph pattern, but not necessarily identical. ASM is often used in situations where

an exact match of a subgraph pattern may not be available and/or a similar sub-

graph is still of interest. Various similarity measures can be used to compute the

degree of similarity between the subgraph pattern and subgraphs in the input graph,

for example, graph edit distance, graph kernels, graph-based similarity measures or

statistical significance. These algorithms compare the topology of the subgraph pat-

tern and the larger graph and return a similarity score that reflects the degree of

similarity between them. More generally, they employ the notion of a vertex pair,

which consists of a node from the query graph and a candidate vertex from the

larger input graph. The similarity scores of the vertex pairs capture the overlap

between the neighborhood of the vertices and are then combined to compute the

match score of the subgraph.

By allowing for the detection of subgraphs that are similar in topology, but may

have different labels, sizes, or shapes, ASM algorithms provide more flexibility and

robustness in graph analysis. For example, in bioinformatics, it enables the detection

of candidate regions in the genome, that might have undergone abnormal mutations,

for studying the associated medical effects (Shen and Guda, 2014; Vandin et al.,

2011). In image processing, ASM can be used to detect objects or regions in images

that are similar to a given template but may have different scales, orientations, or

deformations. This has applications in various areas such as object recognition, face

detection, and medical image analysis (Sun et al., 2020). Both traditional (Yan et al.,

2016; Dinari, 2017) and machine learning based approximate subgraph extraction

methods have been extensively researched for various domains (Anwar et al., 2022;
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Lou et al., 2020), although no one method is provably the best. Additionally, with

the advancement in connectivity and technology, the amount of data to be processed

is becoming larger by the day with graphs having millions of nodes and billions of

edges. Thus, there is a compelling need to develop new methods to find matching

subgraphs which are more efficient, with better runtime and accuracy.

Approximate subgraph matching approaches can be based on the similarity of

the edge structure of the graph, e.g., the graph edit distance or the similarity of

the labels, e.g., Jaccard similarity, string edit distance etc. However, such methods

generally have a threshold associated with each metric, where one may lose out on

good matches with high structural similarity if they exhibit label similarity which is

marginally below the specified threshold, or vice-versa. Additionally, if a probability

value is associated with the elements of the graph, another application-dependent

threshold may need to be defined and appropriately tuned to retrieve matching

answer subgraphs.

The use of statistical significance measures in graph similarity provides an ele-

gant contrast to threshold-based methods by allowing the unification of label and

structural overlap measures. The probabilistic nature of graphs can also be cap-

tured using these measures, allowing for retrieval of subgraphs that show statitically

significant similarity to the queried graph pattern, and that considerably deviate

from the expected subgraph pattern. Statistical models and measures involve es-

tablishing a relation between the empirical (or observed) results of an experiment

with factors affecting the system or to pure chance. In such scenarios, an observa-

tion is deemed to be statistically significant if its presence cannot be attributed to

randomness alone. The classical p-value computes the chance of rejecting the null

hypothesis. This implies that the observation is drawn from a known probability

model characterizing the experimental setup. In other words,a lesser p-value (typ-

ically less than 0.05) is considered statistically significant suggesting that the null

hypothesis should be rejected. However, the computation of the p-value is generally

computationally infeasible since it entails the generation of all possible outcomes.
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To alleviate this problem various methods have been studied (Bejerano et al., 2004),

however, in systems, a small factor of error can be tolerated, and an approximation

of the p-value can be calculated using other statistical measures. The literature

hosts numerous statistical models to capture the uniqueness of observations, includ-

ing z-score, log-likelihood ratio (G2), and Hotelling’s T 2 measure (Read and Cressie,

1988).

In a recent work, VELSET (Dutta et al., 2017) proposed the use of the Pearson’s

chi-square distribution for subgraph matching. The chi-square distribution (χ2) is

widely used to compute the goodness-of-fit of a set of observations (to the theoretical

model describing the null hypothesis). In most situations, the chi-square distribution

provides a good approximation to the p-value (Read and Cressie, 1989). Inspired by

the success of statistical analysis we developed two algorithms for subgraph match-

ing based on the chi-square measure. One of the methods discussed in this work

assumes deterministic input graphs and makes use of Chebyshev’s inequality along

with Pearson’s chi-squared test. The second method is well-suited for probabilis-

tic graphs and employs the chi-squared analysis as well. It avoids enumerating all

possible worlds, this clever trick results in the efficient retrieval of statistically sig-

nificant subgraph matches in large probabilistic graphs while eliminating the need

for a threshold based measure. In another study, conducted as a part of this thesis,

we identify the limitations of a statistical significance based ASM algorithm and

propose a variation improving over it. We also explore the effect of different graph

and method parameters on its performance.

The approximate subgraph matching techniques discussed so far were based on

graph theory and are more popularly referred to as traditional subgraph match-

ing tactics. Another type of subgraph matching approach is the graph embedding

method, which maps each graph into a low-dimensional space, where the similarity

between graphs can be measured by distance metrics (Bai et al., 2019). Aggregating

over node embeddings is a common way of generating graph embeddings, providing

flexibility in assigning importance to more significant (e.g., higher degree) nodes.



6

Several machine learning (Perozzi et al., 2014; Grover and Leskovec, 2016) and neu-

ral network (Kipf and Welling, 2017; Velickovic et al., 2018; Xu et al., 2019) based

architectures exist in the literature for generating node embedding vectors. Such

neural networks are referred to as graph neural networks (GNN)s. GNNs are a type

of neural network architecture specifically designed to work with graph-structured

data. Unlike traditional neural networks, the underlying architecture of a GNN de-

pends on the input graph and varies from graph to graph. GNNs learn a function

that maps the input graph to a desired output. They can generalize to unseen nodes,

i.e., nodes that were not present during the training phase. This inductive learning

capability of GNNs is one of the key reasons behind their popularity. GNNs have

shown promise in a variety of tasks, including node classification, link prediction,

and graph classification.

However, most GNNs consider only the neighborhood of nodes, due to which

nodes with isomorphic neighborhoods have the same embedding and cannot be

distinguished from one another. To alleviate this issue, the position of the node in

the larger context of the graph can be encoded into the embedding. The position

of a node is generally captured with respect to a chosen set of anchor nodes. P-

GNN (You et al., 2019) is the first work to address this need and uses the shortest

path distance to the anchor nodes to encode the positional information of graph

nodes. Having said that, the assumption of shortest path rarely holds in the real

world (Gulyás et al., 2018; West and Leskovec, 2012; London, 2017; TransStat,

2016). Additionally, relying on the shortest paths alone ignores the other paths in

the graph, which results in information loss while making the model vulnerable. To

mitigate this we propose a random walk based distance metric with a diversified

anchor node selection mechanism. The model is robust to adversarial attacks and

can be used for downstream prediction tasks.
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1.2 Contributions

In this work, we focus on the problem of approximate subgraph matching. We make

the following contributions in this regard.

• VerSaChI1 (Vertex Neighborhood Aggregation for Statistically Significant

Subgraphs via Chebyshev Inequality)

It is a scalable and highly accurate paradigm for approximate subgraph query-

ing over deterministic graphs based on 2-hop label and structural similarity

with the query graph.

• ChiSeL2 (Chi-Square based Search in Large ProbabiListic Graphs)

It is an ASM paradigm for probabilistic graphs which can search over graphs

of billions of edges in a matter of seconds.

• VeNoM3 (Vertex Neighbor Matching)

It improves over an existing ASM algorithm and discusses various factors that

affect the matching approach and analyzes their effect on its performance.

• GraphReach4

It is a machine learning based model to produce holistic and robust position-

aware node embeddings which can be used in downstream tasks for (sub)graph

similarity.

1.2.1 VerSaChI

The problem of approximate subgraph matching in a large graph for a smaller query

graph, entails search and retrieval of top-k subgraphs of the large graph that best

match the query graph. The best match is defined as the retrieved answer subgraph

that exhibits the maximum similarity with the query graph. For a deterministic,
1The source code is available at https://github.com/shubhangiat/VerSaChI.
2The source code is available at https://github.com/shubhangiat/ChiSeL.
3The source code is available at https://github.com/shubhangiat/VeNoM.
4The source code is available at https://github.com/idea-iitd/GraphReach.

https://github.com/shubhangiat/VerSaChI
https://github.com/shubhangiat/ChiSeL
https://github.com/shubhangiat/VeNoM
https://github.com/idea-iitd/GraphReach
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Figure 1.1: VerSaChI - Workflow

undirected and vertex-labeled input graph, with no hyperedges, VerSaChI searches

for top-k subgraphs which match with the query graph with high similarity. To

estimate similarity, it employs the notion of statistical significance. The statistical

significance score encodes the degree of similarity of a subgraph of the input graph

to the query graph and is computed in a bottom-up manner. The score represents

the likelihood that the match is not a random event. To quantify the statistical

significance score of a match, the Pearsons’s chi-square statistic (χ2) is used which

evaluates the deviation of an observed event from the expected event.

To capture its underlying distribution of the input graph, VerSaChI computes

the similarity scores between all the vertices of the input graph and creates similar-

ity buckets based on it. It then uses Chebyshev’s inequality aptly to compute the

expected probability of these buckets. The Chebyshev’s inequality (de Tchébychef,

1867) models the probability of deviation for a random variable from the mean.

Such techniques have been studied for sequence mining (Dutta and Bhattacharya,

2010; Sachan and Bhattacharya, 2012; Dutta and Bhattacharya, 2012), substring

matching (Dutta, 2015), subgraph similarity (Dutta et al., 2017; Agarwal et al.,

2020), and clique finding (Dutta and Lauri, 2019). The similarity between a query

node and input vertex is computed based on the label overlap between the immedi-

ate and 2-hop neighbors of the query node and the input vertex and is discretized

into the buckets. This is the observed similarity. The statistical significance of a
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vertex pair match, computed based on the expected probabilities of the buckets and

the observed similarity exhibited by the neighbor vertex pairs of the vertex pair,

depicts whether there is a significant overlap between the 2-hop neighborhood of

the query node and the input vertex. Through a greedy approach, the vertex pair is

expanded to a matching subgraph by exploring the neighbor vertex pairs having the

largest chi-square score. In this way, k non-overlapping best-matching subgraphs

are retrieved from the input graph. Figure 1.1 depicts the workflow of the algorithm.

In this thesis, we showcase the efficacy of this method over several datasets in

comparison to other existing approaches. We also analyze the effects of various

parameters, like graph size, query type etc on its efficiency. We also study the

impact of the bucket size and empirically show that smaller-sized buckets capture

the finer differences between the graph substructures better.

1.2.2 ChiSeL

Subgraph querying over deterministic graphs is generally more straightforward than

in probabilistic graphs. In deterministic graphs, nodes and edges are either present

or not, however, in probabilistic graphs, nodes and edges can have probability val-

ues associated with them, indicating the likelihood of their existence. An important

aspect of probabilistic data is the possible world semantics. The aim of the ap-

proximate subgraph querying, now, is to find a subgraph that is not only highly

similar to the query graph but is also the one with the largest existential probabil-

ity across all the possible worlds. A possible world is a deterministic instance of the

non-deterministic input graph, created after considering the probabilities associated

with its nodes, edges and attributes. Each world, thus, has an associated prob-

ability of existence. For this reason, the direct application of subgraph matching

approaches designed for deterministic graphs becomes infeasible as the computa-

tion of similarity between an input graph substructure and the query graph requires

scavenging through exponential possibilities.

Probabilistic graph querying is used regularly in biology. For example, protein-
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protein interaction networks have been modeled as stochastic graphs, where statis-

tical significance measures have been used for motif discovery (Jiang et al., 2006).

In the domain of information extraction and natural language processing for au-

tomated question-answering platforms such as Jeopardy (Chandrasekar, 2014), in-

volves finding the closest matching subgraph with the highest possible probability

of truthfulness and existence of facts. Large graphs pose the need to be efficiently

queried for the user to be able to effectively extract relevant information. Since a

query in general retrieves multiple answers, it is further important to rank them.

However, the probabilistic nature of the graph makes it challenging for determinis-

tic approaches to determine which result is better and, hence, methods that work

directly with probabilistic graphs are preferable.

With probabilities involved, the choice of the best matching subgraph is influ-

enced by two factors, label and structural similarity, and existential probability.

Most ASM methods for probabilistic graphs make a decision based on application-

specific fine-tuned thresholds, and matching subgraphs must have a similarity and/or

existential probability that exceeds this predetermined threshold value. Thus, there

is a trade-off between the label and structural similarity and the existential proba-

bility.

ChiSeL proposes an integrated measure based on statistical significance that tries

to capture the possible world semantics and this trade-off for approximate matching

subgraphs. ChiSeL returns the top-k subgraphs similar to the specified deterministic

query graph pattern, from an undirected and vertex-labeled input graph which is

void of hyperedges. The input graph is also assumed to be edge-probabilistic with

independent probabilities, however, the method can be quickly adapted to various

scenarios of uncertainty in the graph structure and attributes.

To compute the similarity of a vertex pair, ChiSeL tries to match the label dis-

tribution of the query node with that of the input vertex, two labels at a time, with

all possible world instances of the subgraph. The two labels may find a complete

match, no match or a partial match, in different possible world scenarios, based on
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Figure 1.2: Overview of ChiSeL

which each is assigned a probability of match. It is important to observe that there

are only these three possible scenarios, and they are exclusive and exhaustive. The

summation of probabilities for these three events over all pairs of neighbor-labels

of the query node aggregates the amount of label and structural match in different

worlds. Although, enumerating all possible worlds is inefficient and computation-

ally expensive. ChiSeL calculates the probabilities of the three match events, for

each pair of neighbor-labels of the query node, using insightful observations which

overcome the combinatorial nature of the possible world semantics.

The expected computation is based on the number of unique labels in the graph,

to incorporate label similarity of neighbors; and, the degree of a vertex, for structural

match. However, since the graph is probabilistic, the existence of neighbors of a

vertex is uncertain. To address this issue, we propose the concept of expected degree

which amalgamates the probabilistic characteristics of the graph into the expected

value computation of the match events.

The statistical significance score of the vertex pair estimates the similarity of

the vertex pair using the χ2 measure. The vertex pair is then greedily expanded

preferring its neighbor vertex pairs with high χ2 values. A high-level overview of the

algorithm is shown in Figure 1.2. Experiments conducted on billion-sized graphs

and various synthetic datasets showed that ChiSeL has a very low runtime with

high accuracy. Extensive experiments were done on various graph parameters for a

deeper analysis of the algorithm. In comparison to deterministic ASM approaches,
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for real-life use cases, the subgraphs returned were highly relevant and accurate.

The paradigm is flexible enough to adapt to other flavors of uncertain graphs as

well.

1.2.3 VeNoM

Despite the considerable amount of research done in approximate subgraph query-

ing methods, for both deterministic and probabilistic graphs, there is still room for

researchers to conduct more in-depth analysis of ASM paradigms. Different factors

can affect the subgraph querying algorithms, such as the degree of nodes, label distri-

bution, missing edges, etc. The breadth and depth of the neighborhood considered

is, perhaps, one of the most important aspects of an algorithm, while computing the

similarity of two nodes.

For this analytical research, VeNoM chooses a state-of-the-art ASM paradigm,

VELSET (Dutta et al., 2017) and improves over it. The approach of VELSET

captures the underlying characteristics of a deterministic, node-labeled graph by

defining its expectation for each vertex based on their degrees. However, the empir-

ical analysis revealed that for input graphs with a lower number of unique labels,

it results in an inversion of chi-square values, with bad matches receiving a higher

similarity score than good matches. VeNoM proposes to use the query degree in

expectation computation which is shown experimentally to perform better than

VELSET.

It further delves into two of the several factors affecting an algorithm, the depth

of the neighborhood considered when comparing the input graph vertex for a match

with the query node, and the breadth of the neighborhood considered. We iden-

tify that the improved algorithm takes into account only 1-hop neighborhood while

matching and matches only two labels of the neighborhood at a time. Algorithms

are developed for different values of the depth and breadth of the neighborhood

considered for the match. Through experiments, we discuss and analyze their per-

formance with respect to the base algorithm on real-life graphs. Apart from the
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(a) (b)

Figure 1.3: (a) The color of the node indicates its class label. Each node is also char-
acterized by a numerical attribute. (b) The red nodes, v3 and v5, represent the anchor
nodes.

design parameters of an algorithm, we also study the effect of graph parameters on

the performance of the algorithms.

1.2.4 GraphReach

Although traditional graph mining techniques have shown promising results, the

success of graph neural networks based methods inspired researchers to also explore

machine learning based models for various graph mining problems. Traditional

GNNs aggregate over neighbor attribute information to encode the information of

a node into embedding vectors. However, such methods fail to capture the position

of the node which may lead to identical node embeddings. For instance, nodes v1

and v8 in Figure 1.3a, belong to two different classes, denoted by the color of the

node. However, since their 2-hop neighborhoods are isomorphic to each other, their

learned embeddings in a 2-layer Graph Convolutional Network (GCN) are identical.

Hence, the GCN will be incapable of correctly predicting that v1 and v8 belong to

different class labels. Consequently, for predictive tasks that rely on the position of

a node with respect to the graph, the performance suffers.

One of the first works to address the need for an inductive GNN that encodes

position information is P-GNN (You et al., 2019), based on the shortest path to a

set of selected nodes. P-GNN randomly chooses a small set of nodes, anchor nodes,

and computes the shortest path of all nodes to these anchor nodes. This information
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is then embedded in a low-dimensional space. However, if two nodes are equidistant

to the anchor nodes, it would lead to ambiguous node embeddings. For example, in

Figure 1.3b, the shortest distance of v1, v2 and v6 is the same to the anchor nodes v3

and v5. The use of shortest paths also implies that the remaining paths of the graph

are ignored and there is a loss of information. Further, in case of an adversarial

attack, the addition or deletion of a few edges in the graph can alter the shortest

path distances for target nodes, and, in turn, their embeddings. It has been shown

that in real-life scenarios many short paths are preferred over the shortest path.

To this end, we present GraphReach, which is a holistic approach using ran-

dom walks for reachabilitity estimation between anchors and nodes, which is a non-

symmetric distance metric. It also employs a diversified anchor selection algorithm

based on a greedy hill-climbing approach, that maximizes the graph coverage. In

the neural architecture, GraphReach is initialized with the node attributes. For

each graph node and anchor node pair, the attribute information of the two nodes

is amalgamated with the to-and-fro reachability estimates, thus, encoding the posi-

tional information of the nodes with respect to the anchors, these are generally called

messages. In the intermediate layers, messages corresponding to all the anchors are

aggregated using an aggregation method, e.g., mean-pooling or attention-based ag-

gregation, and passed on to the next layer as the node attribute. At the output

layer, the message vectors are linearly transformed using a trainable weight matrix

to lower dimensional embedding, each dimension of which encodes the positional

information of the node corresponding to an anchor.

The node embeddings were tested on various datasets for different tasks and

showed very high relative improvement of up to 40% over P-GNN and other existing

GNN architectures. We also show that for the standard black-box adversarial setup

GraphReach performed better with a negligible drop in performance compared to

the state-of-the-art.
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1.3 Outline

The thesis is organized into seven chapters. Chapter 1 provides an introduction to

the topic and an overview of the problem statement. Chapter 2 reviews the existing

state-of-the-art research works on subgraph matching. In Chapter 3, we present

the methodology of the ASM approach VerSaChI over deterministic graphs. We

identify the difficulties associated with probabilistic graphs and explore ChiSeL, the

approximate subgraph querying technique, ChiSeL, which effectively addresses these

challenges, in Chapter 4. In Chapter 5, we discuss different aspects and their effects

analytically for an existing approximate subgraph matching approach. In Chap-

ter 6, we discuss GraphReach, an inductive model for learning node-embeddings

that encodes their global positioning in the graph. We conclude by presenting the

conclusions of our study in Chapter 7 and discuss possible future work directions.





Chapter 2

Related work

2.1 Deterministic Graph Matching

Graph and subgraph matching provide fundamental primitives for applications per-

taining to graph analytics and pattern mining in network structures (Conte et al.,

2004). Classical studies in this domain include tree-pruning (Ullmann, 1976), Swift-

Index (Shang et al., 2008) and VF2 (Cordella et al., 2004). Since they depend ma-

jorly on backtracking and tree-search algorithms, they are computationally costly

for large modern-day graphs. Using a set of feasibility rules defined in (Cordella

et al., 2004) for structural match, the VF2++ algorithm (Jüttner and Madarasi,

2018) improves over VF2. In (Larrosa and Valiente, 2002), the tree search method

for isomorphism is sped up by another heuristic derived from constraint satisfaction.

The NP-completeness of subgraph isomorphism (Cook, 1971) led to efforts towards

graph edit distance (GED) measures for exact matches; however, the optimal solu-

tion for GED was shown to be NP-hard (Zeng et al., 2009). These approaches used

state space representation and feasibility rules for graph isomorphism.

Shang et al. (Shang et al., 2008) proposed QuickSI for testing, and Swift-Index

for filtering using prefix tree indexing. Most methods that target biological net-

works, such as PathBlast (Kelley et al., 2004), SAGA (Tian et al., 2006), NetAl-

ign (Liang et al., 2006) and IsoRank (Singh et al., 2008), work mostly for small

networks. Tsai and Fu (Tsai and Fu, 1979) proposed an ordered-search algorithm
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for determining error-correcting isomorphism and pattern classification combining

both structural and statistical techniques. GraphGrep (Giugno and Shasha, 2002),

a graph querying algorithm, uses hash-based fingerprinting for subsequent filter-

ing. Such filtering-and-verification based approaches worked with threshold-based

distance computation, identifying common substructures, and candidate fragment

computation. Identifying graphs in a graph database containing a query subgraph

have also been studied (Sun and Luo, 2019). However, our target applications re-

quire the identification of the precise locations in the graph(s) where the best match

of the query is found.

In general, such methods involved only exact subgraph matching, whereas this

work involves approximate matching to extract the best matching subgraphs.

2.2 Approximate Graph Matching

Subsequently, research in subgraph matching has mostly focused on approximate

subgraph similarity matches (Aggarwal and Wang, 2010), wherein a small amount

of mismatch is tolerable. An efficient index-based approximate subgraph matching

tool, TALE (Tian and Patel, 2008), uses maximum weighted bipartite graph match-

ing. Different heuristics based on predefined graph distance and radius thresholds

GADDI (Zhang et al., 2009b), set cover (SIGMA) (Mongiovi et al., 2010), edge edit-

distance (SAPPER) (Zhang et al., 2010), regular expressions (Barcelo et al., 2011),

etc. have been proposed. APGM (Jia et al., 2011) proposes a method to mine

useful patterns from noisy graph databases. C-Tree (Zou et al., 2004) proposes a

generalized representation of graphs that can be used for both subgraph querying

and subgraph similarity computation. However, these methods are computationally

quite expensive and are, hence, infeasible for modern web-scale graphs.

A semantic-based search algorithm using a sequencing method to capture the se-

mantics of the underlying graph data was proposed in GString (Jiang et al., 2007).

S4 system (Yu et al., 2012) finds the subgraphs with identical structure and seman-

tically similar entities of query subgraph. Other relevant works in the subgraph
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matching domain are gIndex (Yan et al., 2005a), FG-Index (Cheng et al., 2007),

iGraph (Han et al., 2010), Grafil (Yan et al., 2005b), Gcoding (Zou et al., 2008),

GPTree (Zhang et al., 2009a), and cIndex (Chen et al., 2007). An extensive survey

about graph matching algorithms was presented in (Conte et al., 2004). Random

walks to find the best matching in large graphs were used in (Tong and Faloutsos,

2006; Tong et al., 2007). Subgraph matching considering the similarity between

objects associated with two matching vertices (Zou et al., 2007), and a maximum

likelihood estimation approach (Armiti and Gertz, 2014) were also proposed.

Recent approaches (Arora et al., 2014; Dutta et al., 2017) employ statistical

analysis methods to find statistically significant subgraph matches that deviate from

the expected subgraph pattern significantly. Dutta et al. (Dutta et al., 2017)

improve upon NeMa (Khan et al., 2013) and SIM-T (Kpodjedo et al., 2014a) ap-

proaches based on neighborhood search. A concise description and comparison of

various techniques available for graph matching in large graphs is given by (Mah-

mood et al., 2017). An interesting survey of existing graph-based structural and

pattern matching approaches across diverse applications such as computer vision,

biology, networks, etc., has been presented in (Gallagher, 2006). Inspired from

(Dutta et al., 2017), VeNoM proposes an enhancement. Our proposed method,

VerSaChI, employs Chebyshev’s inequality to capture the underlying graph charac-

teristics which captures finer differences between potential matches during statistical

analysis.

These approaches consider deterministic graphs and are difficult to generalize

for probabilistic setting wherein varying types of uncertainties might be present.

2.3 Probabilistic Graph Matching

Recently, with the advent of uncertain and probabilistic graphs such as knowledge

graphs, RDF stores, etc., algorithms for probabilistic graph querying are being stud-

ied. Initially, convex optimization methods were proposed (Hintsanen and Toivonen,

2008). However, they found it difficult to handle large and noisy real-life graphs.
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Inexact graph matching for uncertain graphs majorly comprises a three-phase

framework: structural pruning, probabilistic pruning and verification. Often the un-

certainty information in the graph is ignored and candidate answers are searched

using conventional structural pruning algorithms, followed by probabilistic prun-

ing of candidates and verification of the answer candidates. Utilizing this frame-

work, (Yuan et al., 2012, 2015) compute tight probabilistic bounds for pruning of

approximate subgraph matching based on a threshold for uncertain graphs with lo-

cal correlations and adhering to the possible world semantics. Efficient upper and

lower bounds were computed for relaxed query graphs by transforming the problem

to set cover and integer quadratic programming problems in (Yuan et al., 2015).

Additionally, (Yuan et al., 2016) constructs an optimal probabilistic index based on

edge-cuts of target graph to compute an upper bound on pattern matching proba-

bility for pruning. The above filter-and-search framework performs well in subgraph

matching. On arrival of a query, it retrieves and sorts the promising positions in

the underlying deterministic graph with the help of index structures incorporat-

ing PWS, and verifies the results by checking for subgraph isomorphism. However,

given a database of probabilistic graphs, it only returns graphs that contain the

entire query subgraph and does not report the exact location of the query subgraph.

The direct approach described in (Gu et al., 2016) extends TreeSpan by efficient

incremental similarity computation mechanism intertwined with structural pruning,

with no attention to uncertainty information. Sampling has been shown to be effec-

tive in dealing with the hardness of managing and mining uncertain graphs (Leskovec

and Faloutsos, 2006). The performance of sampling-based approaches depends heav-

ily on the samples considered, though. Weighted subgraph matching algorithms were

considered using the probability values as weights in (Hua and Pei, 2010; Khan and

Chen, 2015). However, such techniques were unable to generalize to other possible

uncertain scenarios.

Hua et al. (Hua and Pei, 2010) proposed three novel types of probabilistic path

queries using basic principles. For probabilistic graph settings, a host of diverse
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problems such as frequent subgraph mining (Chen et al., 2019; Li et al., 2012; Pa-

papetrou et al., 2011; Zou et al., 2010), clustering (Kollios et al., 2011), reliable

subgraphs (Liu et al., 2012), shortest-path (Hua and Pei, 2010), and maximum

flow (Han et al., 2014) have been actively worked upon. Potamias et al. (Potamias

et al., 2010) studied k-nearest neighbor queries over uncertain graphs, and propose

sampling algorithms for tackling #P-completeness of reachability problems. Lian

et al. (Li et al., 2018) proposed customization over existing tree-indexing strategies

based on uncertain graph decomposition for k-NN queries. Reverse k-NN queries for

uncertain graphs were studied in (Gao et al., 2017). Approximate subgraph match-

ing queries on fuzzy RDF graphs using path decomposition was recently shown to be

efficient (de Virgilio et al., 2015; Li et al., 2019a). A systematic introduction to the

topic of managing and mining uncertain data can be found in (Yuan et al., 2011),

while (Kassiano et al., 2016) provides a detailed overview of state-of-the-art methods

on uncertain graph mining. Such path decomposition-based similarity techniques

have been shown to be effective in the past, and, hence, we compare the empirical

performance of ChiSeL with them. Interestingly, the neighborhood search step in

ChiSeL can be considered to be similar to such path-based approaches taking into

account the structure around a vertex.

2.4 Machine Learning based Graph Matching

Although the traditional graph mining techniques based on theoretical grounds have

shown promising results, there is still scope for improvement. The increasing size

and complexity of data and graphs, and the need for a smaller response time further

motivate newer solutions. With the popularity of neural networks, data scientists

have made several attempts at solving the problem of graph matching by learning

node embeddings. Such neural networks are generally called Graph Neural Networks

(GNNs). As discussed previously, GNNs are neural networks designed to directly

work on graphs. The objective is to learn a function for task prediction, e.g., node

classification, link prediction, graph classification, etc.
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Several GNNs exist in the literature. DeepWalk (Perozzi et al., 2014) learns

node representation inspired by the skip-gram model while Node2vec (Grover and

Leskovec, 2016) takes it a step further with more sophisticated random walks.

GCN (Kipf and Welling, 2017) is a semi-supervised variant of convolutional net-

works. These methods are transductive in nature, i.e., it requires complete graph

structure at the training time and cannot generalize to unseen nodes. In contrast,

GAT (Velickovic et al., 2018) is an inductive model that expands on GCN by as-

signing attention weights to important connections. GraphSAGE (Hamilton et al.,

2017) proposed sampling the neighborhood is more efficient and robust for large

graphs. GIN (Xu et al., 2019) is another GNN that claims to be as powerful as the

Weisfeiler-Lehman graph isomorphism test.

These models can be used for various downstream tasks, like graph matching.

SimGNN (Bai et al., 2019) uses GCN node embeddings to predict graph similarity

based on the graph edit distance. NeuroMatch (Lou et al., 2020) proposes subgraph

matching based on graph decomposition and learns embeddings for subgraphs. A

matching matrix based training for graph matching is presented in (Caetano et al.,

2009), while (Baskararaja et al., 2012) presents a GNN to identify a subgraph that

matches the query graph. Sub-GMN (Lan et al., 2021) discusses a subgraph match-

ing network for node embeddings and models the relationship between matched

nodes. IsoNet (Roy et al., 2022) proposes subgraph matching based on neural edge

alignment of query and input graph while (Liu et al., 2020) uses deep learning meth-

ods to predict the count of isomorphic subgraphs.

Most GNNs, in general, work on the message passing principle from neighbors

alone, i.e., the embedding of a node depends only on its neighborhood. For cases,

where the location of the node in the context of the graph structure is important for

the prediction task, such methods would inadvertently fail. Position-aware GNNs

try to bridge this gap, by incorporating messages from nodes in other parts of the

graph, which is generally referred to as the anchor nodes. P-GNN (You et al., 2019)

is the first work to propose this idea. It randomly selects a set of anchor nodes and
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learns low dimensional node embeddings based on Lipschitz embeddings (Bourgain,

1985). A-GNN (Liu et al., 2019a) proposes a modified algorithm for anchor-selection

based on the importance of their position in the graph. In our work, we discuss the

shortcomings of relying on shortest paths alone and propose a random walk based

approach for a more holistic and robust distance metric and anchor set selection

technique. More recently, PO-GNN (Waikhom et al., 2023) proposed a truncated

distance metric and an improvised anchor-selection mechanism over GraphReach

without significant gains.





Chapter 3

VerSaChI

In this Chapter, we present the workings of our proposed approximate subgraph

matching algorithm for deterministic graphs, Vertex Neighborhood Aggregation for

Statistically Significant Subgraphs via Chebyshev Inequality - VerSaChI - for effi-

cient top-k subgraph matching. We show how deviations from the underlying graph

characteristics, modeled using probabilistic bounds, can efficiently provide label and

structural similarity measures for approximate subgraph matching. Experimental

results on various real and synthetic datasets showcase how the proposed algorithm

outperforms existing techniques in accuracy and is robust to noise.

3.1 Preliminaries

Before discussing the algorithm, for ease of understanding let us familiarize ourselves

with some of the terms and notations that will be commonly used in this work.

Definition 3.1. Target graph (G). A target or input graph G = (VG, EG,LG,Γ), is a

large graph where, VG refers to the vertex set, EG refers to the set of edges, LG is a

function that maps vertices of the graph to a label, and Γ is the set of all labels.

Definition 3.2. Query graph (Q). A query graph Q = (VQ, EQ,LQ), is a small

graph where, VQ refers to the vertex set, EQ refers to the set of edges, and LQ is a

function that maps the vertices of the graph to a label.
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The input and the query graph share the label space, i.e., LG : VG → Γ and

LQ : VQ → Γ.

Definition 3.3. Candidate Vertex Pair ⟨q, v⟩. When a query node q ∈ VQ and an

input vertex v ∈ VG have a similar label, i.e., LQ(q) ≈ LG(v), then v is a candidate

match for q.

In general, a vertex pair implies candidate vertex pair with a query node and

a target vertex. For ease of understanding, as a convention, any random pair of

vertices is referred to using parentheses, e.g., (u, v), while angular brackets, e.g.,

⟨q, v⟩, imply a candidate vertex pair with a query node and input vertex. Also, we

refer to a vertex of the query graph as a node and the target vertex as vertex. The

similarity of labels is an application dependent metric, and any standard technique

can be used to compute it, Jaccard similarity, string edit distance, etc. However,

for our purpose, without loss of generality, we assume exact label matching.

3.1.1 Methodology overview

VerSaChI uses statistical significance to quantify the similarity of a vertex pair. We

use Pearson’s chi-square statistic (χ2) to measure the probability of attributing an

observed event to chance or randomness. Mathematically,

χ2 =
∑
∀i

(Oi − Ei)2

Ei
(3.1)

where Oi and Ei are the observed and expected number of occurrences for all

outcomes, respectively.

To aid in χ2 computation we use the Chebyshev’s inequality (de Tchébychef,

1867). It models the probability of deviation for a random variable in terms of the

number of standard deviations from the mean. For a random variable X with finite

mean µ and varianceδ2, Pr(|X −µ| ≥ t · δ) ≤ 1/t2 for any t > 0 (t ∈ R). Intuitively,

the degree of matching (i.e., similarity) between a query graph and its matching

subgraph would demonstrate significant deviations (due to high similarity) from the
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expected characteristics (considering a random subgraph). Chebyshev’s inequality

is used to characterize such deviations for computing the statistical significance of

candidate matching subgraphs.

3.2 VerSaChI Framework

The working of VerSaChI comprises the following stages. The first five steps are

offline and compute the different characteristics for each vertex – done only once for

the target graph. The next 4 steps, the online phase upon query arrival, compute

characteristics for the query nodes and identifies candidate neighborhood regions

matching the query by using two-hop label and structural overlap. The deviation

of the observed similarity, from the underlying distribution is then characterized by

Chebyshev’s inequality and represented as symbols. Based on statistical significance,

matching candidate regions are identified and explored greedily, to obtain the best

matching subgraphs.

3.2.1 Offline Phase

The offline phase of VerSaChI consists of index creation and expectation definition

for efficient computations in the online phase.

1. Index Creation.

Given a target graph G, VerSaChI initially constructs two indexing lists sum-

marizing the labels of the vertices and their neighbors. The first is an inverted

list, ILG, that maps vertex labels to the corresponding list of vertices having

the label. The second index, the label neighbor list, LNLG, stores the label

information of the neighbors for each vertex in G. A label count vector index,

LCVG(u), ∀u ∈ VG is also constructed. It stores the count of occurrence of

each label (for |Γ| labels) in the neighborhood of u. This enables efficient

computation of similarity between vertices as described next (step 4 onwards

in offline and throughout the online phase).
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Figure 3.1: Venn diagram representing the neighborhood overlap and mismatch consid-
ered for similarity between two vertices

2. Similarity Measure.

For any pair of vertices (u,w), we use a modified Tversky index (Tversky,

1977) to compute similarity in their neighborhood.

η(u,w) =
|N (u) ∩N (w)|

|N (u) ∩N (w)|+ |N (u) \ N (w)|γ
(3.2)

where N (u) is the multiset of labels in the neighborhood of u including the

label of u itself. Observe, by setting γ = 1, we obtain the original Tversky

index1 with α = 1 and β = 0. Intuitively, the similarity of w is maximized

w.r.t. u when all neighbor labels of u are present in the neighbors of w (i.e.,

N (u) ⊆ N (w)). For ease of understanding, Figure 3.1 shows a Venn diagram

of the multisets involved in the Equation 3.2. To elaborate, on the arrival

of the query graph, for a candidate pair ⟨q, v⟩, we argue that the presence of

additional neighbors of v should not affect the final similarity score negatively,

hence, we set β = 0 in the Tversky index. In essence, the equation captures

the neighborhood recall of u provided by w (thus, α = 1). The exponential

penalty factor, γ, penalizes increasing mismatches in the neighborhood label

overlap between vertex pairs. It captures fine differences in the neighborhoods

by accentuating even smaller mismatches. Empirically, γ = 3 gave the best

1Tversky index:
S(X,Y ) = |X ∩ Y |

/(
|X ∩ Y |+ α|X \ Y |+ β|Y \X|

)
, for sets X and Y with α, β ≥ 0.



29

results.

3. Initialization.

Using LCVG(u) and similarity measure η(u,w), VerSaChI computes the vertex

similarity scores for every pair of vertices in G. This captures the underlying

distribution of the input graph. The expected similarity distribution across

random neighborhoods of G is captured via three characteristics computed

using η(u,w) : ∀(u ∈ G, w ∈ G)

i. Average vertex similarity score for all vertex pairs in G:

ψ(G) =
∑

u,w∈VG
η(u,w)

|VG|
(3.3)

ii. Standard deviation of the vertex similarity scores of G:

δ(G) =

(∑
u,w∈VG

(η(u,w) − ψ(G))2

|VG| − 1

)1/2

(3.4)

iii. Maximum deviation of vertex similarity score from the average among

all the vertex pairs in terms of standard deviations in G, this can also be

referred to as the maximum z-score:

△(G) = max
u,w∈VG

{ |(u,w) − ψ(G)|
δ(G)

}
(3.5)

4. Symbol Categorization.

The degree of matching between a query node and target graph vertex is

captured by the amount of deviation of the vertex pair similarity score (in

terms of the number of standard deviations) from the underlying expected

distribution (computed in the previous step). The standard deviations are

discretized using the step size parameter, κ. It also determines the total

number of possible buckets or symbols, τ = ⌈(△(G) − 1)/κ⌉. The set of

category symbols, therefore, is Σ = {σ1, σ2, · · · , στ}. Smaller values of κ are
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preferred for differentiating between finer-grained structural mismatches.

For a pair of vertices (u,w), its similarity is characterized using the symbol

σi, 1 ≤ i ≤ τ . The first symbol, σ1, spans the range of standard deviations up

to 1 + κ, i.e.,

σ1 : 0 ≤
|η(u,w) − ψ(G)|

δ(G)
< 1 + κ (3.6)

Subsequent symbols cover step size standard deviations each, for 2 ≤ i ≤ τ ,

σi : 1 + (i− 1) · κ ≤
|η(u,w) − ψ(G)|

δ(G)
< 1 + i · κ (3.7)

5. Expected Probabilities of Symbols.

The expected probability of occurrence of the category symbols is next com-

puted using the Chebyshev’s inequality. Observe, the deviation of similarity

of a vertex pair from the mean can be in negative or positive direction.

Since we are interested in vertices that have higher similarity than the mean

(to capture a higher degree of matching), we only discretize the similarity (into

symbols) when it is greater than the mean. For all similarities that are lesser

than the mean, we fold them into the symbol σ1 (Figure 3.2 shows the span of

each symbol for easier understanding). Thus, assuming a symmetric one-sided

Chebyshev’s inequality, the occurrence probability of symbol σi is,

Pr(σi) ≊
1

2

[ 1

(1 + (i− 1) · κ)2
− 1

(1 + i · κ)2
]

(3.8)

for 2 ≤ i ≤ τ , and

Pr(σ1) = 1−
τ∑
j=2

Pr(σj) (3.9)

We also empirically evaluated the variant where the deviation where both the

positive and negative side of the mean are considered (i.e., without folding).

However, it produced no changes in our results. Since a very low similarity

(large negative deviation) can potentially have large chi-square values and,
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Figure 3.2: A representation of the span of symbol categories

thus, produce false matching results, VerSaChI uses the one-sided version.

3.2.2 Online phase

The above steps are offline, and performed only once for a target graph. Once a

query arrives, the following online steps take place.

1. Candidate Pair Mapping.

Upon arrival of a query graph Q, the online processing starts with the con-

struction of indexes ILQ, LNLQ, and LCVQ, analogously to G. For each label

in Q, VerSaChI creates candidate pairs between the query nodes and target

vertices having the same label. These candidate pairs form the initial seed ver-

tex for extracting matching subgraphs (to the query) via greedy neighborhood

search. Formally, the candidate pairs generated are

CP = {⟨q ∈ Q, v ∈ G⟩ | LG(v) = LQ(q)} (3.10)

2. Vertex Symbol Sequence. For a candidate pair ⟨q, v⟩, VerSaChI computes

the vertex pair similarity score, η⟨q,v⟩, and characterizes the similarity score

by assigning a category symbol based on the deviation from the expected

similarity distribution (as discussed previously). The category symbol σ⟨q,v⟩

captures the one-hop neighborhood similarity for vertices q and v.

We next compute “second-order” candidate pairs between the vertex sets ad-

jacent to q and v. A greedy best mapping based on the vertex pair similarity

score is used to compute the second-order candidate pairs. Similar to ⟨v, q⟩,

each second-order candidate pair is assigned a category symbol based on the

deviation of its similarity score from the expected. The initial category symbol
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Figure 3.3: Two-hop neighborhood similarity based computation of χ2 statistical signif-
icance for vertex match in VerSaChI.

σ⟨q,v⟩ is aggregated with the second-order category symbols to form the vertex

symbol sequence, O⟨q,v⟩, for the candidate pair ⟨q, v⟩.

As an example, consider Figure 3.3 depicting an initial candidate pair between

vertices q1 and v1 (both having label A) with category symbol σ1 assigned to it.

The adjacent vertices of v1 ({v2, v3, v4}) and the neighbors of q1 ({q2, q3, q4})

are then greedily best-matched based on vertex pair similarity to obtain the

“second-order” candidate pairs. For instance, v2 and q2 provide the best match

with the same label and the same neighborhood labels and, thus, form the next

candidate pair (with, say, category symbol σ2). Subsequently, v3 and q3 are

matched having the same label and partial neighborhood overlap (consider to

be assigned symbol σ3). Finally, the candidate pair ⟨q4, v4⟩ is obtained with

category symbol σ4. The corresponding vertex symbol sequence, O⟨q1,v1⟩ =

{σ1, σ2, σ3, σ4}, associated to ⟨q1, v1⟩, captures the two-hop similarity between

the candidate pair vertices q1 and v1.

3. Statistical Significance.

The computed symbol sequence O⟨q,v⟩ signifies the degree of matching between

the two-hop neighborhoods of q and v. Assuming d to be the degree of q, since

mapping is performed for the neighbors of q, the length of O⟨q,v⟩ is d. Thus,

the expected occurrence counts of category symbol σi is E[σi] = d · Pr(σi).
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The observed occurrence counts of the category symbols are directly obtained

from O⟨q,v⟩. Using the observed and expected counts, VerSaChI computes

the chi-square statistics, χ2
⟨q,v⟩, for all the candidate pairs obtained in CP

(Equation 3.10).

4. Approximate Matching.

The candidate pairs along with their computed chi-square values, ⟨q, v, χ2
⟨q,v⟩⟩,

are inserted into a primary max-heap structure. The candidate pair with the

largest χ2 value is extracted (assume ⟨v, q⟩) for initializing the top-1 match-

ing subgraph, Match(1), and is considered as the seed vertex pair for greedy

expansion to find a matching subgraph for the query Q.

Next, candidate pairs between adjacent vertices of the extracted seed pair, i.e.,

between neighbors of q and v, are constructed (as in step 1 of the online phase)

and pushed into a secondary max-heap structure. As before, vertex symbol

sequences of the candidate pairs in the secondary heap are constructed, and

their statistical significance scores are computed. The pair with the highest

χ2 value is extracted, and added to Match(1). This process is iterated till

the secondary heap is empty, or the size of Match(1) equals the number of

vertices in Q. The subgraph obtained inMatch(1) is reported as the top-1 best

approximate matching subgraph for Q.

Vertices extracted from the primary and secondary heaps are marked as “done”

to prevent duplicate entries in the heap structures, and ensure that the same

region is not repeatedly explored.

To retrieve top-k approximate matches for a query, the secondary heap is reset

and the process is re-run, starting from picking the currently best candidate pair

(with the highest statistical significance) from the primary heap. This is repeated

until k matches are obtained.
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Dataset # Vertices # Edges |Γ|

Human 4.7K 86.2K 44
HPRD 9.5K 37K 307
Protein 43.5K 81K 3
Flickr 80.5K 5.9M 195
IMDb 428.4K 1.7M 22

Table 3.1: Summary of the characteristics of the datasets

3.2.3 Complexity Analysis

For graph G = (VG, EG,LG,Γ), assume n = |VG| and m = |EG|, |Γ| denotes the

number of unique labels. The overall space complexity of VerSaChI, is O(n +m +

τ+n · |Γ|), since during index construction (offline phase), O(n) space is required for

ILG, O(m) for LNLG, O(n · |Γ|) for LCVG, and symbol probabilities require O(τ).

The time taken for index construction are O(n) for ILG, and O(m) for both LNLG

and LCVG. Computing the target graph underlying distribution requires traversal of

LCVG for each vertex pair in G. Thus, total offline time is O(n+m+n2·|Γ|) ≈ O(n2).

Once a query arrives, for each query node, candidate pairs (with the same label)

are constructed using the inverted indices. Assuming uniform label distribution in

G, the number of candidate pairs is O(nQ ·n/|Γ|), where nQ is the number of nodes in

Q. For each candidate vertex pair, vertex symbol sequence generation (both initial

and “second-order”) takes O(ρ · |Γ|) time where ρ is the maximum degree in G. Since

χ2 computation takes O(τ) time, the overall runtime of VerSaChI is O(nQ · n/|Γ|).

3.3 Experiments

In this section, we discuss the empirical setup and evaluation of VerSaChI with other

approaches.

3.3.1 Setup

All experiments were implemented in C++ and were conducted on an Intel(R)

Xeon(R) 2.60GHz CPU E5-2697v3 with 500GB of RAM.
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Baselines

We compare the performance of VerSaChI algorithm against the following:

• VELSET (Dutta et al., 2017), a statistical significance based approach for

exploring candidate regions with partial label match, and

• G-Finder 2(Liu et al., 2019b), a graph traversal based indexing for dynamic

filtering and refinement of matching neighborhoods.

Datasets

We evaluate the algorithms on real datasets from three different domains:

i. Biological Networks.

Protein-protein graphs of Human, HPRD (Bi et al., 2016) and Protein (Rossi

and Ahmed, 2015).

ii. Social Interaction. user interaction network on the hosting site Flickr (Rossi

and Ahmed, 2015) with the label of each user (vertex) denoting the group that

they belong to.

iii. Knowledge Graph.

Movie relationship graph IMDb (Rossi and Ahmed, 2015) containing named

entities like movies, actors, etc., along with their relationships.

The dataset characteristics are shown in Table 3.1, |Γ| denotes the number of

unique labels in the graph. Using synthetically generated Barabási-Albert graphs we

study the scalability of VerSaChI.

Query Generation

Query graphs (connected) are constructed (from the datasets) by initially selecting

a random vertex, and exploring its neighborhood till nQ vertices are visited. These
2G-Finder was obtained from github.com/lihuiliullh/GFinder and evaluated on a Visual

Studio 2015 C++ platform.

github.com/lihuiliullh/GFinder
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Dataset / Accuracy Running Time (sec)
Algorithm Human HPRD Protein Flickr IMDb Human HPRD Protein Flickr IMDb
VELSET 0.42 0.65 0.37 0.75 0.53 0.01 0.01 0.16 0.13 1.31
G-Finder 0.45 0.12 0.47 out of memory 0.55 0.01 0.12 out of memory
VerSaChI 0.90 0.81 0.67 0.84 0.87 0.12 0.06 0.77 1.98 6.90

Table 3.2: Overall accuracy and runtime performance of the algorithms on the different
datasets.
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Figure 3.4: Performance for different query types on Human and IMDb datasets.

are referred to as exact queries. To study the performance of the algorithms in

the presence of noise, exact query graphs were perturbed by introducing structural

and label noise randomly by (i) modifying node labels (nLabel), or (ii) inserting or

deleting nodes (nVAdd and nVDel resp.), or (iii) adding or deleting edges (nEAdd

and nEDel resp.). The number of perturbations is limited to 2. Further, for each

scenario, we generate queries with sizes varying from 3 to 13 (at intervals of 2),

with 20 query graphs extracted for each size. Thus, for each dataset, we consider

(6 × 6 × 20) = 720 queries, and report average results across all the queries for a

dataset. For Barabási-Albert graphs only exact queries were considered.

Evaluation Metrics

The efficiency of the algorithms is measured in terms of edge retrieval accuracy

(using the labels of end vertices), that is, the fraction of edges of the query graph

Q that are present in the matching subgraph retrieved. Additionally, we report the

average runtime required (per query graph) by the different approaches to extract the

approximate matching subgraphs. Since the introduced perturbations do not exist

in the original graph, the exact query (for obtaining the noisy query) is considered

as the ground truth.
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Figure 3.5: Performance over query size on Human dataset.

3.3.2 Results

From Table 3.2, we observe that VerSaChI has significantly better accuracy than

the competing algorithms for finding the best matching subgraphs with more than

20% accuracy improvements (averaged across varying query types and sizes). The

run-time of VerSaChI is slightly more than the other approaches due to the two-hop

neighborhood similarity computation. In absolute terms, though, it is quite practi-

cal. Overall, with a slight increase in compute time, VerSaChI offers a substantial

accuracy gain. G-Finder crashed due to out-of-memory issues for Flickr and IMDb

datasets.

Figure 3.4 depicts the performance for different query types. Results on the other

datasets were observed to be similar. VerSaChI achieves better accuracy across all

the different query types, with a slight increase in runtime. Figure 3.5 shows that

with an increase in query size, the runtime increases linearly (across query types),

while the accuracy remains largely unaffected.

Figure 3.6 studies the scalability of VerSaChI using synthetic Barabási-Albert

graphs. The runtime is seen to increase linearly with the number of vertices and

average degree, conforming to the analysis of Section 3.2. The accuracy of VerSaChI

is unaffected in these scenarios. With an increase in the step size κ, accuracy

decreases, as the number of symbols decreases, limiting the power of VerSaChI

to differentiate between finer differences in neighborhood mismatches between the

graphs, while the runtime remains mostly constant.

The maximum index size taken by VerSaChI in our experiments was 1.4 GB for



38

 0
 0.2
 0.4
 0.6
 0.8

 1
A

cc
ur

ac
y

|Γ|=2
|Γ|=50

|Γ|=500
|Γ|=5K

 0.01

 0.1

 1

 10
 30

1K 5K 10K 50K 100K

R
un

 T
im

e 
(s

)

Number of Vertices

 |Γ|=2
 |Γ|=50

 |Γ|=500
 |Γ|=5K

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

|Γ|=2
|Γ|=50

|Γ|=500
|Γ|=5K

 0.01

 0.1

 1

 10
 65

5    10  25  50  100  250

R
un

 T
im

e 
(s

)

Average Degree

 |Γ|=2
 |Γ|=50

 |Γ|=500
 |Γ|=5K

(a) Number of Vertices (b) Average Degree
(Avg. Degree = 50, κ = 0.001) (|V| = 50K, κ = 0.001)

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

|Γ|=2
|Γ|=50

|Γ|=500
|Γ|=5K

 0.01

 0.1

 1

 10

 0.5  2  4 0.001  0.01  0.1  1

R
un

 T
im

e 
(s

)

Value of Step Size (κ)

 |Γ|=2
 |Γ|=50

 |Γ|=500
 |Γ|=5K

(c) Step Size (κ) (|V| = 50K, Avg. Degree = 50)

Figure 3.6: Performance of VerSaChI on Barabási-Albert graphs with varying (a) number
of vertices, n, (b) average degree, and (c) step size, κ.

the Flickr graph, while the highest offline computation time was 32783.44 seconds,

for the IMDb dataset.
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ChiSeL

In real-world scenarios, the obtained data is often inherently uncertain due to noisy

measurements (e.g., missing edges or labels), hardware limitations, inference mod-

els, multiple data-source merging, privacy-preserving perturbation, etc. For exam-

ple, pairwise protein interactions are usually derived by statistical models while

potential interactions in social networks are based on trust and influence factors.

Similarly, confidence values may be associated with extracted facts by information

extraction systems. Further, in many scenarios information is often vague or am-

biguous, expressing subjective opinions and judgments concerning market analysis,

medical diagnosis or even personal evaluation. Such uncertainties can be classified

into three categories (Moustafa et al., 2014):

• identity uncertainty where an entity is represented by multiple objects or ref-

erences in the data,

• attribute uncertainty about the attribute values of entities (e.g., vertex exis-

tence or label uncertainty), and

• relationship uncertainty about whether a particular relationship exists (e.g.,

edge existence or label uncertainty).

A natural way to capture graph uncertainty is to represent them as probabilistic

graphs (Jin et al., 2011; Valiant, 1979), where each entity, relation, or characteristic
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is associated with a probability quantifying the existence likelihood. For example,

in the automated creation of knowledge bases such as YAGO and DBpedia, ex-

traction of entities, facts and relationships have an associated confidence depending

on the veracity of the data source, information extraction technique, and errors in

the pipeline. Without loss of generality, in this work, we only consider the exis-

tence of edge uncertainties, i.e., each relationship between entities has an associated

probability of confidence of existence.

Existing literature defines two main representations of edge uncertainty in prob-

abilistic graphs (Hua and Pei, 2010; Maniu et al., 2017):

• edge-existential model, where each edge is quantified with a probability indi-

cating the chance of edge existence, and

• weight-distribution model, where each edge is associated with a probability

distribution of weight values.

We adopt the former representation model in this work. Later, in Section 4.9, we

discuss how various other scenarios involving vertex, edge, and label uncertainties

can be handled by our algorithm.

We start the discussion by formally defining the problem at hand.

Problem Statement

We borrow the terminologies defined in the previous chapter in Section 3.1, with a

slight modification to the definition of the target graph. Formally, without loss of

generality, we represent an input graph a G = (VG, EG,LG,Γ,P) where VG is the set

of vertices and EG is the set of edges. The vertex labels LG : VG → Γ is a mapping

of vertices to labels drawn from a finite set Γ = {l1, l2, · · · l|Γ|} of cardinality |Γ|.

The mapping P : VG → [0, 1] is defined on the set of edges to obtain the associated

probability of existence for each edge. We assume that G is undirected and does not

contain any hyperedge. The query graph, represented by Q = (VQ, EQ,LQ), specifies

the structure and the labels on the vertices. Since users generally specify a query
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completely, there is no uncertainty in the query edges. Without loss of generality,

as previously, Γ is assumed to include the query labels.

Given a deterministic query Q and a large probabilistic graph G as above, our

aim is to find the top-k statistically significant subgraphs of G that are the best

approximate matches of Q.

4.1 ChiSeL Framework

The ChiSeL algorithm has two distinct phases, namely, the indexing and the querying

phases. In the indexing phase, several inverted index lists for mapping between

vertices, labels, and neighbors are constructed. Observe that this phase is a one-

time pre-processing step for an input graph (to boost the performance of querying

later) and is independent of the query (i.e., performed even before the queries arrive).

The querying phase is initiated when a query arrives, and the index structures are

then used to efficiently compute statistical significance scores to guide the search

process for finding the best matching subgraph. We next describe in detail the

working of the two phases in ChiSeL.

4.2 Indexing Phase

In the offline indexing phase, ChiSeL constructs several indexes to store vertex and

neighborhood information from the input target graph G. Specifically, we construct

the following.

• Vertex-Label Inverted Index.

The vertex-label inverted index stores the mapping between the labels and the

vertices of the input graph, G. Here, the labels present in LG are considered

to be keys, while the vertices associated with those labels form the values.

• Neighbor Labels List.

For each vertex in G, ChiSeL stores the neighboring vertices along with their
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Figure 4.1: Running example of a subgraph matching query graph Q for the
probabilistic target graph G.

labels and the corresponding edge existential probabilities by using an adja-

cency list structure. Figure 4.1 depicts the construction of the above indexes

for our example graphs.

4.2.1 Expected Degree Computation

Since the graph is probabilistic, the existence of neighbors of a vertex is uncertain.

Assuming that the existence of each edge is an independent event, the expected degree

of a vertex is computed as the sum of probabilities of edges incident on it. Thus, if

a vertex v has nv neighbors connected with edges with probabilities p1, p2, · · · , pnv ,

the expected degree, δv, of v is given by,

δv = E[deg(v)] =
nv∑
i=1

pi (4.1)

We prove this by induction. Assume the base case where there is only one

neighbor with probability p1. The expected number of neighbors, therefore, is δ =

p1×1+(1−p1)×0 = p1. Assume that for n−1 neighbors, the expected degree is δ =∑n−1
i=1 pi. If another vertex with edge probability pn is added, then with probability

pn, the number of neighbors is δ + 1, while with probability 1 − pn, it remains δ.

Hence, the new expected degree is δ′ = pn×(δ+1)+(1−pn)×δ = pn+δ =
∑n

i=1 pi.
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Hence, the expected degree of vertex v1 in the example of Figure 4.1 is δv1 =

0.8 + 0.7 + 0.6 = 2.1.

4.2.2 Neighbor Label Probabilities

For each vertex in G, we also compute the probability that a particular label would

occur in its neighborhood. This is used during the querying phase and, hence,

ChiSeL performs the computation during the offline pre-processing phase for faster

querying.

Consider vertex v to have nv neighbors with corresponding labels l1, l2, · · · , lnv ,

each connected by edges with existential probabilities p1, p2, · · · , pnv respectively.

Note that vertex labels may not be unique and may repeat.

Assume label lj to be associated with ψ neighbors of v, which are connected via

edges with probabilities plj1 , p
lj
2 , · · · , p

lj
ψ . The event that no instance of label lj is

present in the neighborhood of v occurs when none of these vertices are neighbors

of v, i.e., these edges do not exist. Denoting the number of instances of label lj in

the neighborhood by #lj, the probability of this event is

P (#lj = 0) = (1− plj1 )× · · · × (1− pljψ ) =
ψ∏
i=1

p̄
lj
i (4.2)

where p̄lji denotes the probability of the edge between the ith neighbor and v not

existing. Using the above equation, the probability that label lj occurs at least once

in the neighborhood of v is,

P (#lj ≥ 1) = 1− P (#lj = 0) (4.3)

Similarly, the probability that label lj occurs exactly once in the neighborhood

of v is given by

P (#lj = 1) =

ψ∑
i=1

[
p
lj
i ·
∏
ι ̸=i

p̄ljι

]
= P (#lj = 0) ·

ψ∑
i=1

p
lj
i

p̄
lj
i

(4.4)
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Possible
worlds

Neighbors of v1(A) P(Wx)
Best matches for query triplets of q1(A) and symbols

v2(B) v3(C) v4(A) ⟨B,A,C⟩ Sym. ⟨C,A,D⟩ Sym. ⟨B,A,D⟩ Sym.
W0 0 0 0 0.7× 0.6× 0.8 = 0.024 ⟨ϕ,A, ϕ ⟩ s0 ⟨ϕ,A, ϕ ⟩ s0 ⟨ϕ,A, ϕ ⟩ s0
W1 0 0 1 0.7× 0.6× 0.8 = 0.096 ⟨ϕ,A, ϕ⟩ s0 ⟨ϕ,A, ϕ⟩ s0 ⟨ϕ,A, ϕ⟩ s0
W2 0 1 0 0.7× 0.6× 0.8 = 0.036 ⟨C,A, ϕ⟩ s1 ⟨C,A, ϕ⟩ s1 ⟨ϕ,A, ϕ⟩ s0
W3 0 1 1 0.7× 0.6× 0.8 = 0.144 ⟨C,A, ϕ⟩ s1 ⟨C,A, ϕ⟩ s1 ⟨ϕ,A, ϕ⟩ s0
W4 1 0 0 0.7× 0.6× 0.8 = 0.056 ⟨B,A, ϕ⟩ s1 ⟨ϕ,A, ϕ⟩ s0 ⟨B,A, ϕ⟩ s1
W5 1 0 1 0.7× 0.6× 0.8 = 0.224 ⟨B,A, ϕ⟩ s1 ⟨ϕ,A, ϕ⟩ s0 ⟨B,A, ϕ⟩ s1
W6 1 1 0 0.7× 0.6× 0.8 = 0.084 ⟨B,A,C⟩ s2 ⟨C,A, ϕ⟩ s1 ⟨B,A, ϕ⟩ s1
W7 1 1 1 0.7× 0.6× 0.8 = 0.336 ⟨B,A,C⟩ s2 ⟨C,A, ϕ⟩ s1 ⟨B,A, ϕ⟩ s1

Distribution of [s0, s1, s2] for each query triplet [0.12, 0.46, 0.42] [0.40, 0.60, 0.00] [0.30, 0.70, 0.00]

Table 4.1: Computing observed values of symbols s0, s1 and s2 for vertex pair ⟨q1, v1⟩
for the example in Figure 4.1.

If there is no neighbor of v with the label lj, then it cannot occur in the neigh-

borhood of v and, consequently, P (#lj = 0) = 1 and P (#lj ≥ 1) = P (#lj = 1) = 0.

The occurrence probabilities of labels in the neighborhood of a vertex is com-

puted using equations 4.2 - 4.4 during pre-processing.

4.3 Querying Phase

After the indexing phase is completed, the querying phase commences on the arrival

of a query graph Q = (VQ, EQ,LQ). We next describe the details of the steps

involved in this phase.

4.3.1 Inverted Lists and Neighborhood Information

Similar to the input target graph G, as described in Section 4.2, the vertex-label

inverted index and neighbor label list structures are computed for the query graph

Q as well. Since query graphs are generally relatively small in size (in the order of

tens of vertices), this step is fast.

4.3.2 Vertex Pair Generation

The querying phase proceeds by constructing similar matching vertex pairs between

graphs G and Q. Specifically, a vertex pair, ⟨q, v⟩, is constructed with vertex q ∈ VQ

and v ∈ VG having the same label, i.e., LQ(q) = LG(v). Given a query node q, such

vertex pairs can be easily formed by using the vertex-label inverted index structure
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of G. Formally, the entire vertex pair set for query Q is,

VP = {⟨q, v⟩ | q ∈ VQ, v ∈ VG,LQ(q) = LG(v)} (4.5)

The vertex pair set for the example in Figure 4.1 is {⟨v1, q1⟩, ⟨v2, q2⟩, ⟨v3, q3⟩, ⟨v4, q1⟩}.

Vertex pairs provide initial seeds for neighborhood exploration for finding match-

ing subgraphs. The ChiSeL framework works on the computation of statistical sig-

nificance scores of these vertex pairs to obtain the top-k potential candidate regions

in G for extracting the best (approximate) matching subgraph to Q. The next

section explains how the χ2-value of a vertex pair is computed.

4.4 Vertex Pair Chi-Square Computation

4.4.1 Label Triplet Generation

For each query node q, ChiSeL initially constructs triplets of the form ⟨x, q, y⟩ where

x and y are the neighboring nodes of q in Q. The corresponding label triplet,

⟨lx, lq, ly⟩, is computed, where lx, lq, and ly denote the labels of the vertices x, q and

y respectively in Q, i.e., lx = LQ(x), lq = LQ(q), and ly = LQ(y). The neighbors

are considered to be symmetric, i.e., ⟨lx, lq, ly⟩ is equivalent to ⟨ly, lq, lx⟩. Therefore,

without loss of generality, we order the labels in a label triplet alphabetically.

Considering vertex v ∈ G that forms the vertex pair ⟨q, v⟩ with q, similar neighbor

triplets ⟨u, v, w⟩ and their corresponding label triplets ⟨lu, lv, lw⟩ of v are extracted

(lu = LG(u), lv = LG(v), and lw = LG(w)).

4.4.2 Triplet Pair Matching

For the vertex pair ⟨q, v⟩, ChiSeL next characterizes the similarity between the label

triplets obtained from q and v. By definition of vertex pair construction, we have

lq = lv. However, the other two neighboring vertex labels (in the triplets) may or

may not match. Based on the degree of label matching between the obtained label
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triplets (of a vertex pair), i.e., label triplet pairs ⟨lx, lq, ly⟩ and ⟨lu, lv, lw⟩, the triplet

pair similarity is characterized into three different classes:

• s2: When both the neighboring labels in the triplets match.

s2 : (lx = lu ∧ ly = lw) (4.6)

• s1: When only one of the neighboring triplet labels matches.

s1 : ((lx = lu ∧ ly ̸= lw) ∨ (lx ̸= lu ∧ ly = lw)) (4.7)

• s0: When none of the neighboring labels match.

s0 : (lx ̸= lu ∧ ly ̸= lw) (4.8)

Since a vertex in the target graph has neighbors connected by probabilistic edges,

it will have a varying number of triplets in different “possible worlds”. We next

explain how the above triplet pair matching assigns symbols in this probabilistic

setting.

4.4.3 Possible Worlds

We adopt the possible world semantics (PWS) graph uncertainty model, where each

vertex v with d neighbors is connected by edges with probabilities of existence. The

existence of edges is considered to be independent of each other. Thus, in each

possible world, either an edge exists or it does not exist. There are 2d possible

worlds, and each such possible world occurs with a particular probability (as shown

in Table 4.1).
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4.4.4 Observed Match Symbol Vector

Assume vertices t1, t2, · · · , td to be the neighbors of vertex v, with corresponding

labels l1, l2, · · · , ld respectively. Consider a particular possible worldWi where edges

to neighbors t1, t2, . . . , tw exist but those to tw+1, tw+2, · · · , td do not exist, for some

1 ≤ w ≤ d. The probability of world Wi is, thus,

P (Wi) = p1 × · · · × pw × p̄w+1 × · · · × p̄d (4.9)

The vertex triplets of v that exist in Wi are Ti = {⟨l1, lv, l2⟩, ⟨l1, lv, l3⟩, · · · ,

⟨lw−1, lv, lw⟩}.

Assuming the vertex pair ⟨q, v⟩, the query triplet ⟨lx, lq, ly⟩ is now matched with

all the possible triplets in Ti. The matching of a query triplet is considered to be the

one that produces the best scenario, i.e., where there are more triplet label matches.

The order of preference of match classes (or symbols) is, thus, s2 ≻ s1 ≻ s0.

For each possible world Wi, a match symbol sj (either s2, s1, or s0) is, hence,

associated with the query triplet, denoted as sj ⊙Wi. The overall probability of a

particular match symbol is the sum of probabilities of the possible worlds to which

it gets associated:

P (sj) =
∑

∀Wi, sj⊙Wi

P (Wi) (4.10)

Thus, corresponding to each query triplet, and a vertex pair, there is a proba-

bility distribution of the symbols s2, s1 and s0. This forms the observed counts for

the match symbols that implicitly incorporate the PWS concept based on different

possible worlds.

Based on the above formulation, Table 4.1 shows the observed symbol vectors

for query triplets corresponding to the vertex pair ⟨q1, v1⟩ with label A. Since v1

has three neighbors, the number of possible worlds is 23 = 8. They are denoted by

W0, . . . ,W7.
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Consider the possible world W1 where only neighbor v4 with label A occurs

but neighbors v2 and v3 do not occur. The probability of this world is P (W1) =

(1 − 0.7) × (1 − 0.6) × 0.8 = 0.096. The label triplets around v1 are ⟨A,A, ϕ⟩ and

⟨ϕ,A, ϕ⟩ where ϕ is a dummy label that is used when at most one neighbor label

exists. Comparing any label with ϕ, including ϕ itself results in a mismatch. For

the query triplet ⟨B,A,C⟩, the best match, therefore, is ⟨ϕ,A, ϕ⟩. Since none of

the neighbors match, this results in the symbol s0. Similarly, for the world W2, the

query triplet ⟨B,A,C⟩ is best matched with the vertex triplet ⟨C,A, ϕ⟩ yielding the

symbol s1. In the world W7, the possible vertex triplets are ⟨A,A,B⟩, ⟨A,A,C⟩ and

⟨B,A,C⟩. The highest match corresponds to ⟨B,A,C⟩ and it yields the symbol s2.

Thus, the world W7 contributes to the symbol s2.

Adding up the probabilities of the worlds in which the symbols occur, the ob-

served symbol vector for the query triplet ⟨B,A,C⟩ is [0.12, 0.46, 0.42]. Since the

probabilities of the possible worlds add up to 1, so do the probabilities of the symbols

for a query triplet.

4.4.5 Multiple Query Triplets

When there are multiple query triplets corresponding to a vertex pair, which is

generally the case, the observed counts of the match symbols are added to form the

cumulative observed count vector, O, for the vertex pair. In Table 4.1, considering

all the three query triplets pertaining to query node q1, the cumulative observed

symbol vector obtained for the vertex pair ⟨q1, v1⟩ is O⟨q1,v1⟩ = [0.82, 1.76, 0.42].

ChiSeL considers the matching symbols of each of the query triplets to find the

best matching subgraph.

4.4.6 Efficiently Computing Observed Vectors

However, in the above process of computing the cumulative observed count vectors,

enumerating all the possible worlds is computationally inefficient. For some vertices

with large degrees, it is practically infeasible. Fortunately, since we are only con-
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cerned with the presence or absence of relevant neighbor vertex labels in the worlds,

ChiSeL efficiently computes the observed symbol vectors based on the probabilities

obtained in the indexing phase.

Consider a query triplet ⟨lx, lq, ly⟩ and a corresponding vertex v in G with label

lv = lq. The vertex v can have multiple neighbors with the label lx (or ly). Equa-

tion 4.2 to Equation 4.4 in Section 4.2.2 give the probabilities of lx (or ly) occurring

various number of times in the neighborhood.

We first consider the case when lx ̸= ly. The symbol s2 occurs in those worlds

where both the labels lx and ly occur at least once. The occurrence of such an event

has the probability

O⟨q,v⟩[s2] = P (#lx ≥ 1)× P (#ly ≥ 1) [using Eq. 4.3] (4.11)

Similarly, symbol s0 occurs when none of the instances of the labels lx and ly

occur:

O⟨q,v⟩[s0] = P (#lx = 0)× P (#ly = 0) [using Eq. 4.2] (4.12)

Since the probability of the match symbols add up to 1,

O⟨q,v⟩[s1] = 1−O⟨q,v⟩[s2]−O⟨q,v⟩[s1] (4.13)

We next consider the case when lx = ly. The symbol s0 occurs in those worlds

where no instance of label lx occurs:

O⟨q,v⟩[s0] = P (#lx = 0) [using Eq. 4.2] (4.14)

Similarly, symbol s1 occurs when exactly one instance of lx occurs:

O⟨q,v⟩[s1] = P (#lx = 1) [using Eq. 4.4] (4.15)
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Consequently,

O⟨q,v⟩[s2] = 1−O⟨q,v⟩[s0]−O⟨q,v⟩[s1] (4.16)

The above computation avoids the exponential enumeration of the possible

worlds and is only linear in terms of the number of neighbors of a vertex. More

importantly, equations 4.2-4.4 are computed in the offline phase before any query

arrives. The querying phase only uses the information and is, therefore, very fast in

practice.

4.4.7 Expected Symbol Vector for Triplet Match

The chi-square statistic computes the deviation of the observations from the expec-

tations. The expected count of triplet match symbols for a vertex triplet is computed

as follows.

Suppose the input target graph contains |Γ| labels that are assumed to be equally

likely in terms of occurrence. Consider a vertex v with expected degree δv (as com-

puted in Section 4.2.1). The chance that a neighbor of v has a particular label lx is

1/|Γ|. Therefore, the chance that none of the neighbors of v has label lx is given by

p̄v =
(
1− 1

|Γ|

)δv
(4.17)

.

Now, considering a label triplet of v, if the highest match symbol (to a query label

triplet) is s0, then none of the triplets have label lx. Since there are two neighboring

vertices in a triplet, assuming the independence of labels, the probability of the

event s0 for v is,

Pv(s0) = p̄2v =

((
1− 1

|Γ|

)δv)2

(4.18)

The chance that there is at least one neighbor with label lx is (1− p̄). Thus, the
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probability that v has a triplet where both the neighboring vertices match is given

by,

Pv(s2) = (1− p̄v)2 =

(
1−

(
1− 1

|Γ|

)δv)2

(4.19)

The event s1 occurs when there is one vertex in a triplet that matches a label

while the other does not. Since there are two ways of enumerating vertex labels in

a triplet, the probability of the event s1 is,

Pv(s1) = 2 · p̄v · (1− p̄v) (4.20)

= 2 ·
(
1− 1

|Γ|

)δv
·

(
1−

(
1− 1

|Γ|

)δv)
(4.21)

Observe that the match symbols are mutually exhaustive, i.e., the probabilities

add up to 1. If a query node q has lenq triplets, the expected counts of the match

symbols (i = 0, 1, 2) for the triplet ⟨q, v⟩ are,

E⟨q,v⟩[si] = lenq · Pv(si) (4.22)

The expected counts of the match symbols are represented as a vector, referred to

as the expected symbol vector. Importantly, the calculation of the above probabilities

is independent of the query (except for Equation 4.22). Hence, they are done in the

offline pre-processing phase of ChiSeL, contributing to the efficiency of the querying

phase.

The vertex v1 in Figure 4.1, as shown earlier in Section 4.2.1, has an expected

degree of 2.1. Assume the total number of labels in L to be L = 4. Hence, P (s0) =

((1− 1/4)2.1)2 = 0.30, P (s1) = 0.49, and P (s2) = 0.21. Thus, the expected symbol

vector for the vertex pair ⟨q1, v1⟩ having three query triplets is computed as E =

3 · [0.30, 0.49, 0.21] = [0.90, 1.47, 0.63].
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4.4.8 Chi-Square of a Vertex Pair

Using the observed symbol vector, O⟨q,v⟩[si] and the expected symbol vector, E⟨q,v⟩[si]

as computed above, ChiSeL finally computes the chi-square value, χ2
⟨q,v⟩, of each

candidate vertex pair ⟨q, v⟩ as:

χ2
⟨q,v⟩ =

2∑
i=0

(O⟨q,v⟩[si]− E⟨q,v⟩[si])
2

E⟨q,v⟩[si]
(4.23)

In the example in Figure 4.1, the chi-square of the vertex pair ⟨q1, v1⟩ is,

χ2
⟨q1,v1⟩ =

(0.82− 0.90)2

0.90
+

(1.76− 1.47)2

1.47
+

(0.42− 0.63)2

0.63
= 0.13

.

4.5 Top-k Subgraph Search

ChiSeL next computes the χ2 scores for each of the vertex pairs obtained from the

query Q. The best candidate regions for subgraph matching are then explored to

obtain the final answer by use of two heap structures as discussed next.

4.5.1 Primary Heap

All the vertex pairs along with their χ2 values are inserted into a max-priority

heap called the primary heap. To compute the similarity for subgraph matching,

vertex pairs are picked up from the primary heap in the priority order, i.e., the one

with the largest chi-square score is picked first, and so on, to form the seed of the

neighborhood search process. A vertex that has been matched earlier is not picked

up any further. This ensures that the subgraphs returned are disjoint. This is done

to avoid duplicate answers.
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4.5.2 Secondary Heap

For each vertex pair picked from the primary heap, its neighborhood is searched to

see if the query subgraph can be completed. Suppose, ⟨q, v⟩ is chosen. The neighbors

of vertices v and q that share the same label (i.e., form a vertex pair themselves)

are extracted, constructed into a vertex pair, and inserted into another priority-max

heap, referred to as the secondary heap.

Assume a neighbor vertex pair ⟨nq, nv⟩. In addition to its chi-square value,

χ2
⟨nq ,nv⟩, the probability, p(v, nv), of the edge connecting v to nv is also inserted

in the secondary heap. The neighbor vertex pair having the maximum value of

p(v, nv) · χ2
⟨nq ,nv⟩ is then picked and the neighborhood search continues using this as

the new seed. The edge probability is used along with the chi-square so that more

probable edges are preferred.

4.5.3 Top-k Search

The growth of the neighborhood continues till the query is completely matched or

the subgraph in the target graph cannot grow any further due to the lack of matching

vertex pairs.

The above process is initiated k times to find the top-k matching subgraphs.

The subgraphs are constrained to be disjoint from each other, by marking vertex

pairs as “visited” in both the heaps.

4.6 Summation of Chi-Square Values

For every matching vertex pair of a query, the chi-square value follows the χ2 distri-

bution with two degrees of freedom (since there are three possible match symbols).

The χ2 values for the vertices of a matching subgraph are added to produce the

total chi-square statistical significance score of the match. Since the addition of

chi-square distributions results in another chi-square distribution (Hall, 1983), for

a query graph Q of size |VQ|, the total chi-square value of the matching subgraph
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follows the chi-square distribution with degrees of freedom 2 · |VQ|. This enables

approximating the p-value of the match if required. The top-k matching subgraphs

are sorted based on their total χ2 values.

On one hand, the observed match symbol vector models the PWS concept by

considering the match symbol (of triplets) across all the “possible” worlds. On the

other hand, the χ2 computation and the greedy neighborhood search takes into

account the structural and label match. Thus, our proposed framework provides an

integrated measure to obtain the best approximate subgraph matches.

4.7 Complexity Analysis

Assume that G has n vertices andm edges whileQ has r nodes and s edges. Building

the query graph indexes require O(s), while creating the vertex pairs VP require

at most n · r = O(n) time, since r and s are small and considered to be constants

in practice. For each vertex pair in VP , computing the expected vector requires

O(1) time, while that for the observed vector requires O(dv) time, where dv is the

degree of vertex v. The complexity of the above operations for all vertex pairs is

approximately O(m).

Considering m ≤ n2, the average degree of vertices in G is a = 2m/n ∼ O(n).

The size of the primary heap is bounded by O(n). For a vertex in the primary

heap, the secondary heap is initially populated by O(a) neighboring vertex pairs.

Subsequently, the best candidate from the secondary heap is extracted and its O(a)

neighboring vertex pairs are added to the heap. Observe, at most r such iterations

are performed on the secondary heap to extract the matching subgraph, providing

a total time complexity of O(r ·a) ∼ O(n) for the heap operations. Hence, for top-k

subgraph matches, the time complexity of ChiSeL is O(m+ k · n).

The size of the primary heap is O(n), while each secondary heap can grow to a

maximum of another O(a) ∼ O(n) neighbors. The extra space overhead, hence, is

at most O(n).

Empirical evaluation, however, shows that the sizes of primary and secondary
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heaps are mostly small constants in general.

4.8 Experimental Evaluation

In this section, we empirically evaluate the efficacy of the proposed algorithm, and

benchmark its performance against state-of-the-art competing algorithms on large

real-life datasets.

4.8.1 Setup

All the algorithms were implemented in C++. The experiments were performed on

an Intel(R) Xeon(R) 2.6GHz CPU E5-2697v3 processor with 504GB RAM running

CentOS Linux 7.2.1511.

Datasets

We use the following datasets as our input target graphs:

• STRING DB or PPI v10.5 (version-10-5.string-db.org): a database of

known and predicted protein-protein interactions created automatically by

collecting information from various sources. We extract the COG mappings

of proteins and their links. The proteins are considered as the vertex set

with the orthologous groups as their labels, and the links form the edges.

Importantly, each protein link is annotated with a confidence score (from 0 to

1) that represents how likely it is that the interaction exists. The total graph

consists of around 7.6M vertices and 1.2B edges with around 200K unique

vertex labels. This dataset is referred to as PPI-complete henceforth.

– PPI-small: We also randomly extract a smaller graph from PPI-complete

consisting of 12K vertices and 10.7M edges with around 2.4K unique

vertex labels.

version-10-5.string-db.org


56

Dataset # Vertices # Edges # Labels Avg. Degree
PPI-complete 7.6M 1.2B 0.2M 316

PPI-small 12.0K 10.7M 2.4K 1789
YAGO 4.3M 11.5M 4.0M 5
IMDb 3.0M 11.0M 3.0M 7

Table 4.2: Characteristics of datasets used.

• YAGO (www.yago-knowledge.org): an open-source knowledge graph consist-

ing of extracted entities and relations from Wikipedia, WordNet and GeoN-

ames. Each relationship is associated with a confidence value. It comprises of

nearly 4.3M vertices and 11.5M edges, with 4M unique labels.

• IMDb (www.imdb.com/interfaces): dataset with information on movies, ac-

tors, directors, etc., with around 3M uniquely labeled vertices and 11M edges.

We randomly assign edge probabilities to model scenarios where the edge ex-

istential probability distribution is not known apriori.

Table 4.2 summarizes the characteristics of the various datasets.

Query Generation

Exact. The query graphs were constructed from each of the above datasets by

initially selecting a random vertex and then exploring its neighborhood using a

random walk till q vertices are visited. Finally, the subgraph induced by the visited

vertices is considered as the query Q. Without loss of generality, we consider the

query graphs to be connected; else, the algorithms can be independently executed

on the disjoint components.

We generated query graphs of different sizes, with the number of vertices varying

from 3 to 13, with a step size of 2. For PPI-complete, the query graph size varied

from 3 to 25. The number of query edges varied from 2 to 80. Further, for each query

graph size, 20 different graphs were randomly extracted from each of the datasets.

We refer to this set of query graphs as exact queries.

Noisy. To study the performance of the algorithms in the presence of noise, we

further create a noisy query graph set by introducing structural noise as follows.

www.yago-knowledge.org
www.imdb.com/interfaces
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For each of the above exact queries obtained, we randomly insert, delete or modify

the probabilities of some edges such that the number of edit operations is 33% of

the edges present in the exact query.

Thus, for each dataset, in general, we considered (6× 20× 2) = 240 queries. For

PPI-complete, the number of queries were (12 × 20 × 2) = 480. Unless otherwise

mentioned, results presented henceforth are averages over the corresponding query

sets.

Competing Methods

Two major strategies are used in the literature: distance/error bounded pruning

approaches and tree/graph traversal based methodologies. Thus, in the same spirit,

we compare the ChiSeL algorithm against two recent state-of-the-art methods:

(i) PBound (Gu et al., 2016), that performs maximal subgraph matching by in-

crementally computing similarity probabilities, and using probability upper

bounds for pruning.

(ii) Fuzzy (Li et al., 2019a), that uses path-based graph decomposition and k-

partite based joining techniques to obtain the best matching approximate sub-

graph on the LUBM benchmark, and has been shown to outperform SPath (Zhao

and Han, 2010) and SAPPER (Zhang et al., 2010).

Parameter Setting

For the above competing methods, we performed the best-effort implementation as

the original code was not available publicly or from the authors.

We experimentally studied the performance of the baselines with different pa-

rameter settings. Fuzzy was tested on varying edit-distance parameter combinations

from the set {0, 0.25, 0.5, 0.75, 1.0}, and different distance and probability thresh-

old parameters for PBound. For the best performance, the parameters of PBound

were set to their default values (as reported in (Gu et al., 2016)), while in Fuzzy
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Method YAGO IMDb PPI-small
Acc. Time (s) Acc. Time (s) Acc. Time (s)

ChiSeL 0.89 1.62 0.87 0.05 0.96 16.69
PBound 0.26 560.92 0.57 101.95 0.29 3134.09

Fuzzy 0.61 1.82 0.62 2.19 0.01 13970.94

Table 4.3: Performance comparison of the algorithms averaged over both exact and noisy
query graph sets.(The results for PPI-complete are not shown since PBound and Fuzzy
could not be run on them. ChiSeL achieves an accuracy of 0.84 on PPI-complete with a
running time of 0.14s.)

the probability threshold was set to 0.1 with the insertion, deletion and replacement

costs for string edit-distance set to 1.0 each.

We set k = 10 for the number of top-k subgraphs returned in our framework.

Evaluation Metrics

We evaluate the quality of the matching subgraphs reported and the performance

of the algorithms using the following measures:

(i) Mean maximum accuracy – reports the average over the maximum accuracy of

a subgraph match found, for each query, within the top-k results reported. We

define the accuracy as the number of matching edges present in the answer

subgraph against the number of edges required for a complete match (i.e.,

edges in the query).

(ii) Runtime – compares the computation efficiency of the algorithms by reporting

the wall clock running times.

4.8.2 Results

The overall performances of the algorithms on the different datasets are tabulated

in Table 4.3.

PBound enumerates all minimum spanning trees and Fuzzy lists all source-

destination paths. Since these numbers are extremely large for PPI-complete that

contains more than a billion edges, none of the queries for PBound and Fuzzy could
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Figure 4.2: Accuracy comparison of different algorithms over all datasets.

finish within a reasonable amount of time (1 hour) for PPI-complete. ChiSeL could

easily scale to such massive graphs along with high accuracy and achieves an accu-

racy of 0.84 on PPI-complete with a running time of 0.14s. For a fair evaluation of all

three algorithms, a smaller dataset, PPI-small, was, therefore, randomly extracted

from PPI-complete.

In terms of runtime, on all the datasets, ChiSeL is the fastest. PBound par-

ticularly suffers in compute time as it iterates over all possible minimum spanning

trees. While running time for Fuzzy is low owing to the enumeration of all the

source-destination paths, it requires a very high indexing time. ChiSeL requires

considerably more running time for YAGO due to the fact that the vertex labels in

YAGO are very long and can have special characters and, therefore, label matching

requires a lot of time. Interestingly, ChiSeL took the longest time for PPI-small,

almost 15 times more than even the total PPI-complete dataset. The reason was

the very large average degree of vertices in PPI-small. To understand this effect

further, we did more experiments on the average degree (see Section 4.8.5).

The quality of ChiSeL was also the best for all the datasets. While Fuzzy pro-

duced medium quality results for YAGO and IMDb, it completely failed for PPI-

small. Fuzzy had too many paths to search since the number of labels were low and,

hence, it ended up not finding the desired subgraphs for almost all the queries.

ChiSeL, thus, efficiently extracts subgraphs with better structural similarity

(edge and label matches) to the query.
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Figure 4.3: Runtime comparison of different algorithms over all datasets.

4.8.3 Detailed Analysis

To further analyze the performance of the algorithms, we conducted experiments

to capture the accuracy and runtime over different query types and query sizes.

Figure 4.2 and Figure 4.3 report the accuracy and the runtime performance of all

the algorithms.

ChiSeL was seen to perform the best in terms of quality, with nearly 100%

accuracy for exact queries for almost all the query sizes for all the datasets except

PPI-complete. The accuracy numbers were also observed to be stable across different

query sizes, thereby demonstrating the robustness of our proposed framework. Even

for the noisy query scenario, the accuracy was around 0.8 for most of the datasets

and more than 0.9 for PPI-small.

PBound depicted a sharp drop in accuracy with an increase in query size. This

is due to its inability to iterate over minimum spanning trees with distinct vertex

sets within a reasonable runtime. Fuzzy showed a steady performance and was not

affected much by the query size. It, however, performed very poorly for PPI-small.
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Figure 4.3 shows that ChiSeL was the fastest for almost all the scenarios. Fuzzy

quickly becomes impractical for larger query sizes and requires a very large time

for query sizes 9 and above. Both PBound and Fuzzy performed very poorly on

PPI-small due to the extremely high average degree. The number of paths and

subgraphs are too many when the density of the graph is high, and, hence, these

algorithms do not scale for such dense graphs.

An interesting anomalous behavior of runtime with query sizes was observed

for IMDb and PPI-complete datasets for ChiSeL. This is explored and explained in

detail later in Section 4.8.5.

4.8.4 Scalability Study

We next study the scalability of the different algorithms with respect to input

graph size. For that, different-sized subsets from the PPI-complete dataset were

created maintaining the average degree in each subset to be around 250. We then

pose queries of size 5, for both exact and noisy scenarios, on these subsets. Fig-

ure 4.4 reports the running times observed on these sampled subgraphs. PBound

performs poorly due to its enumeration of all minimum spanning trees. While for

very small graphs, Fuzzy is comparable in runtime with ChiSeL, the overall scala-

bility of ChiSeL is better. For graphs with a size greater than 50K, the runtime of

ChiSeL is orders of magnitude lesser than the competing approaches. Overall, the

scalability over graph size for all algorithms is at most linear.
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Figure 4.5: Effect of average degree.

4.8.5 Analysis of Effect of Parameters

In this section, we empirically explore the robustness of performance for our proposed

ChiSeL algorithm. We vary different characteristics of the input and query graphs

to study their impact on the accuracy and runtime of ChiSeL.

Average Graph Degree

We first analyze the effect of the average degree of vertices in the input graph over

the performance of ChiSeL. To that end, we took the entire PPI-small dataset and

created various edge subsets of it. We created different samples of decreasing density

from it by randomly deleting edges. The number of unique labels were more or less

conserved. Queries of size 5 were then posed on these graphs.

While we observed no appreciable effect on accuracy, the runtime increased con-

siderably with an increase in average degree (Figure 4.5). This is due to the increase

in the number of neighborhoods, affecting the time taken by ChiSeL to explore and

populate the secondary heap. To understand it further, we measured the size of the

secondary heap, averaged across different queries, for the different scenarios. We

see that while the secondary heap size is only 9 when the average degree is 20, it

increases steadily across the increasing average degree and reaches 543 when the

average degree is 1789. Consequently, the running time increases considerably.
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Figure 4.6: Effect of the number of subgraphs returned.

Number of Subgraphs Returned, Top-k

The next set of experiments measures the effect of the number of subgraphs returned,

i.e., the parameter k for the top-k search. Figure 4.6 shows that there is negligible

effect of k on accuracy for all the datasets and on runtime for IMDb and YAGO

datasets. The runtime increases only slightly for PPI-complete mainly because of

the increase in the number of secondary heap initializations.

Perturbation of Edge Probabilities

Since edge probabilities model the uncertainty in structure for our problem setting,

we next study how changes in edge existence probabilities affect the performance

of ChiSeL. For this study, we use PPI-complete, albeit with a slight modification.

The input graph edges that are present in the query are modified to be certain, i.e.,

the probabilities of those edges in the original graph are set to 1.0. We refer to

this modified dataset as perturbed, while unperturbed denotes the original un-altered

PPI-complete graph. Further, as before, we consider both the exact and noisy query

scenarios. Figure 4.7 depicts the accuracy of ChiSeL with changes in the probability

model of an input graph with varying query sizes.

The accuracy increases considerably for the perturbed version of PPI-complete.

This intuitively follows from the possible world scenario concept. Since the exact

matches to the query edges are modified to have probability 1.0, the exact query

subgraph is extracted and returned by ChiSeL with a higher chi-square (at the
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Figure 4.7: Effect of perturbation of edge probabilities.

top of the ranking) in most cases, thereby leading to an increase in accuracy. This

provides valuable insight that our proposed framework for subgraph matching based

on statistical significance inherently takes into account the possible world modeling.

Possible World Semantics Modeling

To understand the effects of sampling possible worlds, we did the following experi-

ment. From the PPI-small dataset, we created various “certain” graphs by sampling

the edges according to their existence probabilities. In other words, in each such

sampled possible world, an edge is present with its corresponding existence proba-

bility. Each such sampled world, therefore, contains a subset of the original set of

edges, but is certain in nature and no longer a probabilistic graph. For each sam-

pled certain graph, we ran an approximate graph querying algorithm that works for

certain graphs. We chose the NAGA algorithm (Dutta et al., 2017) since it reports

fairly accurate results and works on the same principles of statistical significance.

For each scenario, we created several sampled possible world graphs, varying

from 100 to 10000. We then ran NAGA for queries of size 5 on every possible world

graph, and report the best accuracy obtained over any possible world graph. Despite

creating as large as 10000 possible worlds, the best accuracy obtained over a query

graph was only 0.33. On average, the best accuracy over all the queries was only

0.15.

Since the number of possible worlds for PPI-small is extremely large, it may be

that 10000 samples were not enough. We, thus, chose a very small graph – the

input graph G shown in the example in Figure 4.1. Since there are only 6 edges
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Figure 4.8: Effect of degree distribution over labels on runtime and accuracy for original
and controlled degree distribution.

in it, the total number of possible worlds is only 26 = 64. We sampled 20 possible

world graphs (∼ 31%) from it and ran the query Q in Figure 4.1 against the possible

worlds using NAGA. For these samples, the best accuracy achieved by NAGA was

only 0.50, while ChiSeL demonstrated an accuracy of 0.75. The best accuracy level

of 0.75 was attained by NAGA only after sampling 41 worlds (∼ 64%).

This shows that sampling the possible worlds and running an approximate graph

matching algorithm that works only for certain graphs is not enough to obtain

good results, and is neither effective nor scalable. ChiSeL successfully avoids this

expensive sampling procedure by utilizing the possible world modeling directly in

its framework to find good matches.

Degree Distribution over Labels

An interesting erratic effect was observed over different query sizes for runtime for

both IMDb and PPI-complete datasets (as earlier pointed out in Section 4.8.3). As

shown in Figure 4.8(a), the query processing time was highest for queries with 5

vertices while particularly low for the larger queries of sizes 7 and 9. On further

analysis, it was observed that queries, consisting of vertices whose label-matching

vertices in the input graph exhibit large degrees, adversely affected the matching

subgraph computation time. Since the query sets for each query size were chosen

randomly, the set for 5-vertex size had a particularly high number of such high-degree

graphs than 7- and 9-vertex sets and, hence, the “anomaly”.
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Measures PPI-complete YAGO IMDb
Time (s) 5616.28 66.71 60.16

Memory (GB) 440.00 8.40 7.00

Table 4.4: Indexing time and memory consumption of ChiSeL.

To confirm the above behavior and to alleviate the above occurrence, we sampled

a query set from IMDb with similar vertex degree distribution. We refer to this

query set as IMDb-Induced. The query set was chosen progressively as follows.

First, random queries of size 13 were chosen. Then, queries of size 11 were chosen

by considering subgraphs from this set, and so on. This ensures that the degree

distribution of the different query sets does not vary widely. On this modified query

set, the query processing time increases only slightly and smoothly across the query

sizes (Figure 4.8(b)). This confirms the effect of query degree distribution on the

runtime complexity of ChiSeL. Thus, it was the presence of such anomalous high-

degree query vertices (in the randomly generated queries) that attributed to the

erratic behavior at some points of Figure 4.3. Removing such anomalous vertices

resulted in a smoother curve, as shown in Figure 4.8(a).

Figure 4.8(b) shows that there is no appreciable effect of query degree distri-

bution on the accuracy of the algorithms. Similar results were observed for the

PPI-complete dataset as well.

4.8.6 Indexing Requirements

Table 4.4 tabulates the indexing time and memory requirements of ChiSeL for the

different datasets. Even for the very large PPI-complete dataset with more than a

billion edges, the memory footprint is not very high and the indexing time is less

than 2 hours. The smaller-sized YAGO and IMDb datasets require only a minute

and less than 10GB of memory. This shows that ChiSeL is applicable for diverse

applications using commodity hardware.
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4.8.7 Real World Use Case: StringDB

In this section, we show the performance of ChiSeL in a real-life use case for exam-

ple queries from String DB (version10.string-db.org/cgi/input.pl) containing

synthetases and regulators connected to long-chain fatty acyl-CoA synthetase. We

obtain the “most confident” gold annotated result for two different queries (having

11 and 16 vertices) obtained by varying the number of interactors. The result con-

sists of the exact locations (in terms of vertex IDs) of the PPI-complete graph where

this query structure is important (in terms of score). Detection of such sites is useful

in identifying mutation regions for early detection of cancer and other diseases.

We compare the performance of ChiSeL and NAGA in extracting subgraphs

similar to the queries. Figure 4.9 depicts the obtained matching subgraphs from

the algorithms. (Node identifiers shown in the figure are protein names and are

different from labels of orthologous groups that are queried.) ChiSeL demonstrates

a high structural similarity for both the queries and is seen to outperform NAGA.

The accuracy gap of ChiSeL is more for the larger query since the discriminative

power from the probabilistic modeling and structural similarity via statistical sig-

nificance increases when more the number of vertices and edges are involved. The

inherent modeling of PWS by ChiSeL (by taking the edge existential probabilities

into account) enables it to accurately identify the location of the query subgraphs

that are most important in terms of the protein interactions. It needs to be noted

that there are several occurrences of the same query subgraph based on labels and

edges in the PPI-complete graph. However, the vertex IDs provided as part of the

ground truth provide the exact list of vertices that are the most important. As

shown in Figure 4.9, ChiSeL correctly finds most of them and outperforms NAGA.

The average query processing time for the two queries for NAGA was 27.6s, while

ChiSeL took only 0.31s.

Hence, it can be concluded that ChiSeL provides an effective and efficient al-

gorithm for approximate subgraph matching in uncertain graphs for real-life use

cases.

version10.string-db.org/cgi/input.pl
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(a) Query

(b) ChiSeL

(c) NAGA

Figure 4.9: Evaluation on real dataset: (a) String DB queries, and corresponding results
from (b) ChiSeL and (c) NAGA.
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4.9 Discussion

We saw that the working of ChiSeL hinges on the principle of statistical significance

and it handles the problem of approximate subgraph querying in large vertex-labeled

edge-probabilistic graphs efficiently. Using it for a real-life use case showed that the

results found were highly relevant and accurate. In this section, we briefly outline

how other cases of uncertainty and noise can be handled within our framework.

Edge Labels

In a graph with labeled edges, for a vertex to match the corresponding edge labels

also need to match. To handle this easily, for a neighboring vertex, we can prepend

the corresponding edge label to the vertex label of the neighbor. This ensures that

the edge labels are also taken into account during triplet matching and symbol

generation.

Uncertain Vertices

Consider the vertices in the target input graph to be also uncertain, i.e., each vertex

exists with a probability. This scenario can be handled in the current model by

absorbing the vertex probabilities into the probabilities of the edges incident on

it. Thus, if vertices u, v, w exist with probabilities pu, pv, pw respectively, and the

edges e1 = (u, v), e2 = (w, v) exist with probabilities p1, p2 respectively, then the

graph can be appropriately modified such that the edge probabilities are updated

to p′1 = p1 · pu · pv and p′2 = p2 · pw · pv. The vertices are then no longer treated as

uncertain, and the rest of the framework remains the same.

Noisy Labels

For scenarios where the labels in the vertices might be noisy (e.g., misspelled),

similarity measures such as Jaccard similarity can be used for matching purposes.

For example, vertex labels having a Jaccard similarity score greater than a pre-
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defined threshold will be considered to be a match. Also, semantic similarity of the

vertex labels can be considered in such cases.

Label Uncertainty

The label of a vertex or an edge might also be uncertain, that is, there exists a

probability distribution over a set of labels for each vertex or edge. For example,

suppose vertex v has label l1v with probability 0.6 and label l2v with probability 0.4.

Given a query vertex q with label lq, a suitable distance function (such as Jensen-

Shannon divergence measure) can be used to ascertain the similarity between the

two label distributions. Similar to noisy labels, only if this distance is below a

threshold, the vertices are said to match.

Uncertain Query Graphs

Finally, if the query graph is also uncertain (this uncertainty may be in the edges

and/or vertices and/or labels), we can adopt deviation thresholds of probability for

each uncertainty, i.e., only candidate matches having a probability deviation from

the query vertex/edge matches within the threshold will be considered.



Chapter 5

VeNoM

Many approximate subgraph matching (ASM) algorithms (Khan et al., 2013; Dutta

et al., 2017; Agarwal et al., 2021) have been developed. Different factors affect the

algorithms, such as the degree of nodes, label distribution in the graph, missing

edges, etc. One of the most important aspects is, perhaps, the size of the neigh-

borhood considered when comparing two nodes. Despite the considerable amount

of research done in approximate subgraph querying methods, there is still room for

researchers to conduct a more in-depth study of the effect of these factors on the

subgraph querying methods.

VeNoM (Vertex Neighbor Matching), which is an enhancement over VELSET

(Dutta et al., 2017), a state-of-the-art ASM approach for deterministic graphs. To

analyze the effect of the size of the neighborhood considered during matching, we

instantiate four versions of VeNoM, namely, VeNoM-(1,1), VeNoM-(2,1), VeNoM-

(3,1) and VeNoM-(2,2). We elaborate on them in later sections. The experiments

provide an understanding of the effects of different graph parameters on the per-

formance of the individual instances. This would help in tuning and comparing the

approximate subgraph matching algorithms, for example, the trade-off between a

smaller (respectively, larger) running time and lesser (respectively, higher) matching

accuracy. Extensive experiments show that accuracy improves as the depth of the

neighborhood comparison is increased at the cost of a larger runtime. Experiments

with benchmark algorithms, VELSET (Dutta et al., 2017) and VerSaChI (Agar-
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Figure 5.1: Generalised flowchart used in VeNoM

wal et al., 2021), show that a holistic approach, incorporating both the depth and

breadth of the neighborhood has a better performance.

We first present a succinct summary of VELSET and outline the scenarios where

its effectiveness is limited (Section 5.2). We next present our algorithm, VeNoM,

which is a variant of VELSET, in Section 5.3. Different extension flavors, based

on the depth and breadth of a neighborhood, are discussed in Sections 5.5- 5.7.

Figure 5.1 shows an overview of VeNoM.

5.1 Notations

Consider a target graph G(VG, EG,LG), with vertex set VG, set of edges EG and a

function LG : VG → ΣG that assigns labels to vertices, where ΣG is a finite set

of labels. A query graph Q(VQ, EQ,LQ) is searched for in G, where VQ and EQ

represent the set of query vertices and edges, respectively, and LQ is the query

vertex label function. We use the notation NG(v) and NQ(q) to denote the set of

one-hop neighbors of v ∈ VG and q ∈ VQ, respectively. Additionally, we use the

notation ⟨q, v⟩ to denote a candidate vertex pair, where q ∈ VQ is a query vertex

and v ∈ VG is a candidate match for q. A candidate match is any target vertex v

that satisfies the condition LQ(q) ≈ LG(v), i.e., the label of the query vertex q is

“similar” to that of v. The similarity is based on a user-defined similarity metric,

which may be exact or approximate, e.g., Levenshtein distance, Jaccard similarity,

etc.
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5.2 Overview of VELSET

VELSET is an ASM framework for deterministic labeled graphs based on statistical

analysis. To compute the similarity between two nodes, it compares the 1-hop

neighborhood of the individual vertices. For this purpose, VELSET creates a set of

triplets for each vertex of the target graph and query graph. A triplet for a vertex

q ∈ VQ is of the form ⟨LQ(qi),LQ(q),LQ(qj)⟩, where qi, qj ∈ NQ(q). Triplets for

target vertices are defined in the same way. A list of such triplets represents the

label distribution in the neighborhood of the query and target vertices.

In VELSET, the candidate vertex pairs are formed based on the Jaccard similar-

ity. To characterize the neighborhood similarity of a vertex pair ⟨q, v⟩, the triplets

of q are matched against those of v. Triplet matches are categorized into three cat-

egories, denoting the quality or degree of the match: s0, when no neighbor label is

found to be similar; s1, when only one of the neighbor labels is similar; and s2, when

both the neighbor labels are similar. The categories are ordered as s2 ≻ s1 ≻ s0,

i.e., s2 is preferred over s1, and s1 is preferred over s0.

To quantify the match similarity of a candidate pair, it uses the Pearson’s chi-

squared statistical significance test. The observed value for a vertex pair ⟨q, v⟩ is

the count of the categorical matches obtained by matching triplets. To compute the

expected value of the categorical matches, VELSET assumes uniform label distri-

bution and argues that the probability of a label (from query triplet) not matching

is (1− 1/L)dv , where L is the number of unique labels and dv is the degree of vertex

v ∈ VG. Based on this, the probability for each of the categories is defined as:

Pv(s0) =
(
(1− 1/L)dv

)2
; Pv(s1) = 2 · (1− 1/L)dv ·

(
1− (1− 1/L)dv

)
;

Pv(s2) =
(
1− (1− 1/L)dv

)2 (5.1)

The expected values are computed by scaling the probability values appropriately

for a vertex pair and is used in chi-squared value computation to capture it similarity.

In the final step, the highest scoring candidate pair is greedily expanded until a
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Figure 5.2: Expected value and χ2 trends for VELSET for L = 10.

match is found or the search space of candidate neighbor pairs is exhausted. The

readers can refer to the original paper (Dutta et al., 2017) for more details.

5.3 VeNoM-(2,1)

The expected value calculation in VELSET is influenced by two factors, the number

of unique labels and the degree of target graph vertices. The intuition is that the

expected value for the best match category would be very low and any vertex pair

exhibiting a perfect triplet match would thus get a higher chi-square value. We verify

this by putting different values of L and dv in Equation 5.1. We also assume a query

vertex q of degree 3 and enumerate four possible scenarios based on number of labels

that find a match to analyze the chi-square trends (observed values of categories are

denoted as (#s0,#s1,#s2)):

• m0: when none of the neighbor labels match, (3, 0, 0)

• m1: when exactly one neighbor label matches, (1, 2, 0)

• m2: when exactly two of the neighbor labels match, (0, 2, 1)

• m3: when all the neighbor labels match, (0, 0, 3)

Figure 5.2a shows the probability of different match categories for a fixed number

of unique labels, L = 10 and, different degrees of the vertex. It is observed that

Pv(s2) < Pv(s0) for lower degrees of v and, for higher degrees of the vertex, the
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expected values for the s2 category were higher than for s0. Due to this reason an

inversion in the chi-square values can be seen in the chi-square values can be seen

in Figure 5.2b. Note that m3 is the best possible matching scenario for q, followed

by m2,m1 and m0 in that order. It can be seen that for the χ2 for the best scenario

decreases with increase in the input vertex degree. This essentially penalizes a good

input vertex match for having a higher number of connections.

In general, the inversion is observed when the label set size is much smaller

compared to the vertex degree (roughly, a degree to label ratio of > 0.65). To

overcome this issue, we propose VeNoM, which modifies the expected value calcula-

tion by replacing the input vertex degree dv in Equation 5.1 with the degree of the

query vertex dq, since in general, the query graphs are much smaller and have lower

degrees. Thus, the probabilities of the match categories in VeNoM are computed as,

Pq(s0) = (pq)
2 ; Pq(s1) = 2 · pq · (1− pq) ; Pq(s2) = (1− pq)2 (5.2)

where, pq = (1− 1/L)dq .

For ease of discussing different extensions of VeNoM in this article, we define

two terms, unit and group. Note that both the terms are defined with respect to a

vertex.

Definition 5.1. Unit. An ordered collection of neighbor labels of a vertex which

form a path of length h.

Definition 5.2. Group. A set of k units of a vertex along with its label where the

units correspond to different neighbors.

The terms unit and group help us in extending the triplet format to extensions

of VeNoM. As discussed previously, a triplet consists of two 1-hop neighbor labels

of a vertex. In the proposed terminology, we refer to each of these neighbor labels

as a unit. A triplet is then essentially a group of two units along with the label

of the vertex. Hence, we denote the modified version of VELSET, as an instance

VeNoM-(2,1), in the VeNoM framework. The first number in the bracket denotes
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the total number of units in a group, while the second number denotes the number

of vertices in a unit.

We use the same notation scheme VeNoM-(k,h) for extensions and reductions

of VeNoM-(2,1). Essentially, h controls the depth (or hops) of the neighborhood

considered around a vertex while k controls the breadth of its neighborhood that is

considered during a match.

5.4 Extensions

We describe two methods through which VeNoM-(2,1) can be extended to create

a family of algorithms: (1) multi-hop, where the depth of a unit is increased to

include farther neighbors (Section 5.5); (2) multi-neighbor (Section 5.6), the number

of units in a group is increased. Additionally, we also discuss how VeNoM-(2,1) can

be reduced to a single vertex unit and group version, (Section 5.7).

Figure 5.3 shows the difference between the coverage of neighborhoods in differ-

ent instances of VeNoM. The dash-dotted line depicts a unit, while the dotted rectan-

gular line outlines a group. For example, for vertex q1 with label A, in VeNoM-(1,1),

VeNoM-(2,1) and VeNoM-(3,1), labels of only its one-hop neighbors are considered

as units, i.e., the size of each unit of q1 is 1. Hence, in Figure 5.3 (b), (d) and (e),

q1 has three units, (⟨B⟩, ⟨C⟩ and ⟨D⟩). While for VeNoM-(2,2) a unit is an ordered

pair of two vertex labels, ⟨1-hop vertex label, 2-hop vertex label ⟩. Likewise, in Fig-

ure 5.3 (c), q1 has four units, each composed of two vertices: ⟨B,C⟩, ⟨C,D⟩, ⟨C,B⟩

and ⟨D,B⟩.

In a group, VeNoM-(2,1) and VeNoM-(2,2) use two units, VeNoM-(3,1) groups

are composed of three units while groups in VeNoM-(1,1) contain only one unit. In

Figure 5.3 (b), there are three possible groups for vertex q1:
〈
A, ⟨B⟩, ⟨D⟩

〉
,
〈
A, ⟨B⟩, ⟨C⟩

〉
and

〈
A, ⟨C⟩, ⟨D⟩

〉
. We discuss the structure of units and groups for other instances

in the subsequent sections.
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(a) Graph (b) VeNoM-(2,1)

(c) VeNoM-(2,2)

(d) VeNoM-(3,1) (e) VeNoM-(1,1)

Figure 5.3: Units and groups in different instances of VeNoM, for vertex q1. Units are
represented by dash-dotted elliptical lines and groups by dashed rectangular lines.

5.5 VeNoM-(2,2)

The VeNoM-(2,1) approach can be extended to h-hops by increasing the depth of the

neighborhood considered for each vertex to h-hops, thereby increasing the number

of entities in a unit. For brevity, we describe the framework for k = 2 and h = 2.

For VeNoM-(2,2), a unit consists of labels of its one and two-hop neighbors. A

unit for q ∈ VQ is a tuple of the form ⟨LQ(q
1
i ),LQ(q

2
j )⟩, where qhi ∈ VQ is the ith

node exactly h hops away from q. (A similar notation is used corresponding to the
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target vertex.) Note that q2j ∈ NQ(q1i ) \ {q}, i.e., q2j is a neighbor of q1i other than q.

A group in VeNoM-(2,2) is constructed for each vertex using two of the units of

the vertex and the label of the vertex itself. We restrict a group to have units that

correspond to different 1-hop neighbors of the vertex to ensure a better structural

match. A group for q is of the form
〈
LQ(q), ⟨LQ(q

1
i ),LQ(q

2
j )⟩, ⟨LQ(q

1
k),LQ(q

2
l )⟩
〉
,

with i ̸= k.

In Figure 5.3c, q1 has five valid groups:

•
〈
A, ⟨B,C⟩, ⟨D,B⟩

〉
,

•
〈
A, ⟨B,C⟩, ⟨C,B⟩

〉
,

•
〈
A, ⟨B,C⟩, ⟨C,D⟩

〉
,

•
〈
A, ⟨C,B⟩, ⟨D,B⟩

〉
, and

•
〈
A, ⟨C,D⟩, ⟨D,B⟩

〉
.

An example of an invalid group of q1 in Figure 5.3c is
〈
A, ⟨C,B⟩, ⟨C,D⟩

〉
, since both

the units ⟨C,B⟩ and ⟨C,D⟩, correspond to the same neighbor q4. The units and

groups are similarly constructed for the target vertices.

5.5.1 Similarity of a Vertex Pair

To compute the similarity of a vertex pair ⟨q, v⟩, we match each group of q against

an unmatched group of v. The similarity of two groups is defined based on the

similarity of their respective constituent units.

In VeNoM-(2,2), there are three unit-match categories possible, with u2 ≻ u1 ≻

u0:

• u2: When both the vertex labels of the query unit have an exact match.

• u1: When exactly one of the vertex labels of the query unit matches.

• u0: When none of the vertex labels of the query unit find a match.



79

As maximum matching is preferred, the best possible symbol is assigned.

Similarly, five group-match levels, s0-s4, are defined. The level s0 corresponds

to the case when none of the constituent neighbor labels of the query group find a

match; s1 when exactly one of them matches and so on. Again, to maximize overlap

the group-match categories are ordered, s4 ≻ s3 ≻ s2 ≻ s1 ≻ s0, i.e., s4 is the

best match level. The group-match categories can be defined based on the match

categories assigned to the constituent units. For instance, a group match would be

assigned to the category s0 when none of the constituent units find a match, i.e.,

both the pairs are assigned to the category u0. Similarly, a match is assigned to the

category s1 when one of the two pairs results in a u1 match while the other in u0.

Mathematically,

s0 : (u0 ∧ u0) s1 : (u0 ∧ u1) s2 : (u0 ∧ u2) ∨ (u1 ∧ u1)

s3 : (u1 ∧ u2) s4 : (u2 ∧ u2)
(5.3)

Here, ∧ represents the AND operation and ∨ represents the OR operation among

the match events. Observe that the five events (s0-s4) are exclusive and exhaustive.

To compute the similarity of a vertex pair ⟨q, v⟩, we compute its chi-square value,

which calculates the deviation of the observed counts of the symbols s0-s4, from their

expected counts. The observed counts of these events are computed by comparing

the groups of q against the groups of v. A group associated with v once matched

is not considered for match with any other group of q. The expected counts of the

group-match levels can be computed from the probability distribution of the group-

match levels. We first compute the probabilities of the unit-match levels and then

using Equation 5.3 compute the probability distribution for the group-match levels.

5.5.2 Probability Distribution of Unit Symbols, Pq(ui)

The probability that a label does not match depends on the number of unique labels

L in the target graph. Assuming a uniform distribution of labels, the probability

that a label does not match is (1 − 1/L). Then the probability that none of the
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1-hop neighbors of a query node q with degree dq match the label is pq = (1−1/L)dq .

The probability that the second hop label in the query unit does not find a match

is βq = (1− 1/L)bq , where bq =
∑dq

i=1(dq1i − 1) is the number of 2-hop neighbors of q

(dqi is the degree of q1i ). The value dqii is reduced by 1 to avoid counting q as a 2-hop

neighbor of itself. A unit will be assigned the symbol u1 when exactly one of the

two vertices in the unit match. This can happen in two ways, either the 1-hop label

matches and the 2-hop label does not match or the 2-hop label matches but the

1-hop label does not. In the first case, the 2-hop label is absent in the neighborhood

of the matching 1-hop label. Therefore, the probability of mismatch of the 2-hop

label is conditioned upon the 1-hop label, which is computed as δq = (1−1/L)avgd(q),

where avgd(q) =
∑dq

i=1(dq1i − 1)/dq is the average number of 2-hop neighbors of q per

its 1-hop neighbor. For complete match (u2) as well, the 2-hop label is conditioned

upon the matching 1-hop label. Thus,

Pq(u0) = pq · βq; Pq(u1) = (p̄q · δq) + (pq · β̄q); Pq(u2) = p̄q · δ̄q (5.4)

where, p̄q = (1− pq), β̄q = (1− βq) and δ̄q = (1− δq).

5.5.3 Probability Distribution of Group Symbols, Pq(si)

The probabilities of the group-match levels can be computed based on Equation.

5.3 and are given in Equation. 5.5.

The conditions for symbols s1−s3, as given in the Equation 5.3, can be achieved

in more than one way. For instance, in VeNoM-(2,2) for a group to be assigned the

match symbol s1, the best match found for one of its units has to be u1 and u0 for

the other. The combination of the match categories u0 and u1 can manifest in two
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ways. Such scenarios are accounted for when computing the probabilities.

Pq(s0) = Pq(u0) · Pq(u0) = (pq · βq)2 (5.5a)

Pq(s1) = 2 · Pq(u0) · Pq(u1) = 2 · (pq · βq) · (p̄q · δq) + (pq · β̄q) (5.5b)

Pq(s2) = 2 · (pq · βq) · (p̄q · δ̄q) +
(
(p̄q · δq) + (pq · β̄q)

)2
(5.5c)

Pq(s3) = 2 · Pq(u1) · Pq(u2) = 2 ·
(
(p̄q · δq) + (pq · β̄q)

)
· p̄q · δ̄q (5.5d)

Pq(s4) = Pq(u2) · Pq(u2) = (p̄q · δ̄q)2 (5.5e)

Observe that both the unit-match categories u0-u2 and group-match categories

s0-s4 are exhaustive. In other words,
∑2

i=0 Pq(ui) = 1 and
∑4

i=0 Pq(si) = 1.

5.5.4 Expected Distribution of Symbols

Multiple units and groups can be generated for a vertex, using different 1-hop and

2-hop neighbors in combination. The total number of units associated with query

node q can be computed as Dq =
∑

q1j∈NQ(q)(dq1j − 1). Again, the degree dq1j is

reduced by 1 to avoid counting q as the 2-hop neighbor of itself. From Dq units,(
Dq

2

)
groups can be constructed. Of these,

∑
q1j∈NQ(q)

(d
q1
j
−1

2

)
units correspond to the

same 1-hop neighbors of q, and are, therefore, invalid. Assuming that all the groups

are independent of each other, the total number of valid groups that q can exhibit,

is computed as,

ηq =

(
Dq

2

)
−

∑
q1j∈NQ(q)

(
dq1j − 1

2

)
(5.6)

The probability of symbols s0-s4 is defined for a single query group, and is

multiplied by the total number of groups of q to compute their expected values for

v,

Eq(si) = Pq(si)× ηq (5.7)
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5.6 VeNoM-(3,1)

In the multi-neighbor extension scheme, instead of matching a deeper neighborhood

structure, a broader neighborhood is matched. In other words, units under this

scheme consist of 1-hop neighbors only, as in VeNoM-(2,1); but, the number of units

in a group is increased to 3. The two extension schemes can be used in conjunction

with each other, i.e., an instance of the type VeNoM-(3,2) is also possible. However,

for ease of understanding, we discuss the scheme with h = 1 and k = 3 units in a

group.

5.6.1 Unit and Group Matches

For the same graph setting, as in Section 5.5, a group with q as the focus vertex

would now look like ⟨LQ(q),LQ(q
1
i ),LQ(q

1
j ),LQ(q

1
k)⟩, where i ̸= j ̸= k, with only

four vertex labels. For instance, for the graph shown in Figure 5.3d, there is only

one group possible for vertex q1,
〈
A, ⟨B⟩, ⟨C⟩, ⟨D⟩

〉
.

Since each unit now has only one vertex, there are only two unit-match levels

possible, u0 and u1, when none or at least one matching unit is found, respectively.

As maximum matching is preferred, u1 ≻ u0. Likewise, there are 4 group-match

categories, s3 ≻ s2 ≻ s1 ≻ s0, which are defined using the unit-match levels as,

s0 : (u0∧u0∧u0) s1 : (u0∧u0∧u1) s2 : (u0∧u1∧u1) s3 : (u1∧u1∧u1) (5.8)

Note that there are three different ways in which the configurations for the symbols

s1 and s2 can be obtained. As explained in the previous section for VeNoM-(2,2).

5.6.2 Probability Distribution of Symbols

For q, the probabilities for u0 and u1, now, are,

Pq(u0) = pq; Pq(u1) = 1− pq = p̄q (5.9)



83

The probabilities of the group-match categories based on the Equation 5.8 and 5.9,

are given by,

Pq(s0) = Pq(u0) · Pq(u0) · Pq(u0) = pq · pq · pq = p3q (5.10a)

Pq(s1) = 3 · (Pq(u0))2 · Pq(u1) = 3 · p2q · p̄q (5.10b)

Pq(s2) = 3 · Pq(u0) · (Pq(u1))2 = 3 · pq · p̄2q (5.10c)

Pq(s3) = Pq(u1) · Pq(u1) · Pq(u1) = p̄q · p̄q · p̄q = p̄3q (5.10d)

5.6.3 Expected Distribution of Symbols

The expected value for each symbol is obtained by appropriately scaling their prob-

abilities corresponding to the number of groups exhibited by the query node q, as

shown in Equation. 5.7. For VeNoM-(3,1), the number of groups exhibited by the

query node q is

ηq =

(
dq
3

)
(5.11)

5.7 VeNoM-(1,1)

The VeNoM framework is flexible and the VeNoM-(2,1) version can also be reduced

to VeNoM-(1,1) configuration. In VeNoM-(1,1), the groups consist of a single unit

which is made up of only one 1-hop neighbor. For example, in Figure 5.3e, q1

has three possible groups:
〈
A, ⟨B⟩

〉
,
〈
A, ⟨C⟩

〉
and

〈
A, ⟨D⟩

〉
. Once again, only two

unit-match levels are defined, u0 and u1, with u1 ≻ u0, as in Eqn. 5.9.

Now, since there is only a single unit in a group, unlike previous algorithms, the

group-match categories become synonymous with the unit-match levels. To clarify,

there are now only two group-match levels: s0 and s1, with s1 ≻ s0. The category

s0 is assigned when the unit results in a complete mismatch, i.e., when the single

constituent vertex label of the unit does not match. While s1 denotes the case when

the unit is a complete match, i.e., the single constituent vertex label finds a match.
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Consequently, the group-match probabilities are the same as the unit-match level.

Pq(s0) = Pq(u0); Pq(s1) = Pq(u1) (5.12)

For computing the expected distribution of the group-match categories, the same

process is followed as given in Eqn. 5.7. For the reduced case, the value of ηq = dq.

5.8 Complexity Analysis

Assume a target graph G with nG vertices and L unique labels uniformly distributed

and a query graph Q with nQ nodes and average degree dQ. The time complexity

for matching a single query group is O(1) with efficient target graph indexing. For

a query node with m groups and nG/L possible candidate target vertices, the com-

plexity of finding the best match is O(m · nG/L). The computation of m can be

broken down to the number of units possible with depth h and k units in a group.

The number of units possible with depth h is of the order O(dhQ). The number of

possible groups is then approximately
(dhQ
k

)
which is of the order O(dh·kQ ). There-

fore, the complexity of matching the query graph Q with VeNoM-(k, h) is roughly

O(nQ · dh·kQ · nG/L). Since query graphs are typically quite small, dQ is a constant.

The time complexity of the entire algorithm is, thus, effectively O(nQ · nG/L).

5.9 Experimental Results

In this section, we compare and analyze the performance of the extension schemes

along with the base algorithm on various graph invariants.

5.9.1 Setup

All the algorithms were implemented in C++. The experiments were performed on

an Intel(R) Xeon(R) 2.6GHz CPU E5-2697v3 processor with 504GB RAM running

CentOS Linux 7.9.2009.
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Dataset #Vertices #Edges #Labels
Human 4.6K 86.2K 44
HPRD 9.4K 37K 307
Flickr 80.5K 5.9M 195
PPI 12K 10.74M 2.4K

Table 5.1: Characteristics of real-world datasets

Benchmarks

(1) VELSET Dutta et al. (2017), since it is the algorithm that we extend, and it

also outperformed the then state-of-the-art algorithms NeMa Khan et al. (2013)

and SIM-T Kpodjedo et al. (2014b); (2) VerSaChI Agarwal et al. (2021), which is a

recent ASM framework that outperformed VELSET.

Real Datasets

Subgraph matching is extensively used in bioinformatics and social network analysis,

based on which the datasets were chosen. The Flickr (Rossi and Ahmed, 2015)

dataset is a large social network based on user interactions, while PPI, Human and

HPRD (Bi et al., 2016) are biological networks with protein-protein interactions. PPI

is a randomly extracted small graph from STRING DB (version-10-5.string-db.

org). Table 5.1 summarizes the characteristics of the datasets.

Synthetic Datasets

We chose the Barabási-Albert (BA) graphs to evaluate the scalability of instances of

VeNoM, as it is known to be scale-free and approximate real-world graphs (Albert

and Barabási, 2002). It uses a preferential attachment mechanism. It has two

parameters: the number of vertices (n) and the growth factor (m), i.e., the number

of edges linking a new node to the existing graph. We introduce a third parameter,

the number of unique vertex labels (l). The default values of the parameters were

set to be n = 100, 000, m = 50 and l = 150.

version-10-5.string-db.org
version-10-5.string-db.org
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Query Generation

For our experiments, queries of size 9 were created by randomly extracting subgraphs

from real-world graph datasets. A seed vertex was selected at random and gradually

expanded. As these queries have an exact match available, we name this query set

exact. Further, we introduce noises in the exact query set to generate different types

of noisy queries, (i) addition and deletion of edges (nEAdd and nEDel, respectively),

(ii) alteration of vertex label (nLabel) and (iii) addition and deletion of vertices

(nVAdd and nVDel, respectively). The maximum number of perturbations done to

any exact query graph was capped at 2 while ensuring the connectivity of the query

graph. Each query set consisted of 40 instances.

For the synthetic graph experiments, different query sets of size 9 were generated

in a similar fashion. For the default synthetic graph, we also create queries of sizes

5, 7, 11 and 13, (in addition to size 9).

Metrics

We evaluate the performance of the four algorithms on the following metrics:

1. Maximum mean accuracy: We define accuracy as the ratio of the number of

edges in the answer subgraph that match the query subgraph to the number

of edges in the query subgraph. To evaluate the quality of the matching

subgraphs returned by the algorithms, we choose the answer subgraph with

maximum accuracy among the top-10 highest χ2 value subgraphs. The average

of the maximum accuracy over each query set is reported. We refer to this as

accuracy for simplicity.

2. Average running time: To evaluate the efficiency of the algorithms, the time

taken to return the top-10 answer subgraphs is recorded for each query. We

compare the running times averaged over a query set, referred to as run time.

The graph plots in Figure 5.4 and 5.6 depict the run time in the logarithmic scale.
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Figure 5.4: Performance on real-world graphs (run time in log-scale)

5.9.2 Real-World Graphs

Figure 5.4 shows the performance of instances of VeNoM and benchmark algorithms.

The accuracy of VELSET was lowest and can be attributed to the apparent in-

version of the chi-square values from the expected trend. The improved performance

demonstrated by VeNoM indicates that the proposed remodeling was effective.

Overall, VeNoM-(2,2) performed slightly better than VeNoM-(2,1) or was compa-

rable. This improvement can be attributed to the two-hop neighborhood match done

in VeNoM-(2,2) giving it a look-ahead advantage over VeNoM-(2,1) and VeNoM-

(3,1). At the same time, VeNoM-(1,1) performed slightly worse than VeNoM-(2,1),

as it compares only one neighbor at a time, which reduced its capacity to capture the

neighborhood topological similarities. However, for PPI it is observed that VeNoM-

(3,1) performed marginally better than VeNoM-(2,2). We explore this further in

Section 5.9.3. In general, VerSaChI exhibited relatively higher accuracy among all.

This can be due to the two-hop neighborhood overlap based similarity. However,

the run-time of VerSaChI was five to ten times more than that of VeNoM-(x, 1)
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(x ∈ {1, 2, 3}). Due to the depth of the neighbors considered VeNoM-(2,2) showed

a higher run time. As the depth is increased, the number of possible groups in-

creases multi-fold, which added to the complexity of matching. VeNoM-(2,1) and

VeNoM-(3,1) were comparable in terms of both accuracy and run time.

In general, a significant drop was observed in the accuracy for the nLabel query

set for all the algorithms. This can be attributed to the underlying semantic rela-

tionship between the node labels. During the noisy label query set generation, the

label of some of the vertices was randomly changed to another label from the label

vocabulary of the dataset. This did not conform to the underlying label distribution

and topology of the real graph, which resulted in partial matches.

The comparison on real graphs highlights that an edge based neighborhood

match, i.e., one vertex at a time, as is the case in VeNoM-(1,1) is insufficient.

However, there is no significant improvement when the number of vertices being

compared is increased from two (VeNoM-(2,1)) to three (VeNoM-(3,1)). Notably,

there is no overhead in runtime in a multi-neighbor extension. Between VerSaChI

and VeNoM-(2,2), the former is a more holistic approach and performs better, sug-

gesting that as the depth of the neighborhood being compared increases, a more

comprehensive view of the neighborhood may be required, by increasing the neigh-

borhood span, for a better comparison.

5.9.3 VeNoM-(2,2) vs VeNoM-(3,1)

We further analyze the performance difference between VeNoM-(2,2) and VeNoM-

(3,1) using toy examples. We choose a complete and labeled graph of size 10 and

queries of size 4 (Figure 5.5). For query graph 1, (Figure 5.5 (a)) no performance

difference was observed among the algorithms. However, for query graph 2 (Fig-

ure 5.5 (b)), VeNoM-(3,1) exhibited a larger accuracy. On further analysis, it was

found this is due to the difference in the selection of candidate pair, based on their

χ2 values (as shown in Figure 5.5). Even though the candidate pair ⟨ q1, v9 ⟩ is

a better match accuracy-wise, the vertex pair ⟨ q3, v9 ⟩ achieves a higher χ2 value
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(a) Target Graph

(b) Query Graph 1 (c) Query Graph 2

(d) Query graph 3

Query Graph 2
Algorithms Best Match Acc. χ2 values

⟨ q1, v9⟩ ⟨ q3, v9⟩
VeNoM-(2,2) ⟨ q0, v0 ⟩, ⟨ q2, v7 ⟩, ⟨ q3, v9 ⟩ 0.40 1.064 1.074
VeNoM-(3,1) ⟨ q0, v0 ⟩, ⟨ q1, v9 ⟩, ⟨ q2, v7 ⟩ 0.60 1.272 1.272
VeNoM-(2,1) ⟨ q0, v0 ⟩, ⟨ q2, v7 ⟩, ⟨ q3, v9 ⟩ 0.40 0.871 1.025
VeNoM-(1,1) ⟨ q0, v0 ⟩, ⟨ q2, v7 ⟩, ⟨ q3, v9 ⟩ 0.40 1.600 1.999

Query Graph 3
Algorithms 2nd and; 3rd Best Match 2nd Best

Acc.
3rd Best

Acc.

VeNoM-(2,2) ⟨ q4, v7 ⟩, ⟨ q5, v2 ⟩; ⟨ q4, 6 ⟩, ⟨ q5, 3 ⟩ 0.2 0.2
VeNoM-(3,1) ⟨ q0, v7 ⟩; ⟨ q5, v2 ⟩ 0.0 0.0
VeNoM-(2,1) ⟨ q0, v7 ⟩; ⟨ q5, v2 ⟩ 0.0 0.0
VeNoM-(1,1) ⟨ q4, v7 ⟩, ⟨ q5, v5 ⟩; ⟨ q5, v2 ⟩ 0.2 0.0

Figure 5.5: Performance comparison of different instances of VeNoM on sample target
and query graphs.

for all instances of VeNoM but VeNoM-(3,1). For VeNoM-(3,1), both the above

mentioned vertex pairs exhibit same statistical significance which gives it a chance

to select ⟨ q1, v9 ⟩ over ⟨ q3, v9 ⟩. For such cases VeNoM-(3,1) may be more desir-

able than VeNoM-(2,2), as the latter also has a higher runtime. All the algorithms

reported a partial match with 0.6 accuracy as the best match for the query graph

3 (Figure 5.5 (c)). However, the overall performance for VeNoM-(2,2) was better

with more partial matches in top-3 answers, suggesting that it has the ability to find

subgraphs in scenarios where other instances may fail.
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5.9.4 Parameter Study

We study the effects of various graph parameters on the performance of the algo-

rithms.

Graph Size

A linear increase in run time was seen for all the algorithms with an increase in the

number of vertices (Figure 5.6a). VeNoM-(2,2) is the most accurate as compared to

its peers which is due to its ability to match neighbors 2-hops away. The performance

of VeNoM-(2,1) and VeNoM-(3,1) remain similar with VeNoM-(1,1) being slightly

inferior to them due to its lack of coverage. A higher run time was also reported for

VeNoM-(2,2) with an increase in the graph size, as the number of candidate match

comparisons increases.

Average Graph Degree

The parameter m (in BA graphs) is directly proportional to the degree of the graph

generated. For all the algorithms, a linear increase in runtime was seen with an

increase in the average degree of the graph (Figure 5.6b). Noticeably, time taken by

VeNoM-(3,1) was observed to be marginally lesser than that of VeNoM-(2,2). This

is because the number of groups exhibited by VeNoM-(3,1) is lesser than VeNoM-

(2,1), implying a lesser number of groups to match, which results in a lower runtime.

The lower runtime of VerSaChI than VeNoM-(2,2), in the previous section (Section

5.9.2) can be attributed to this factor as well. Once again, VeNoM-(2,2) achieved

a higher accuracy than others while VeNoM-(1,1) achieved the lowest accuracy for

lower graph degrees.

Label Set Size

As the size of the label set was increased, a rapid decrease in the runtime was

observed (Figure 5.6c). This is a direct consequence of the decrease in the number

of candidate matches caused due to label diversity. Another outcome of this effect is
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(b) Degree scaling (|V | = 100K, l = 150)

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

10-2
10-1

1
101
102
103
104

 2  5  10  25  50  150  500 5K

Ru
n 

Ti
m

e 
(s

)

Number of Labels

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

(c) Label scaling (|V | = 100K,m = 50)
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Figure 5.6: Performance evaluation on Barabási-Albert graphs (run time in log-scale)

an increase in the accuracy of the algorithms. All the algorithms showed a significant

rise in accuracy from the label set size 50 to 150. This shows that the algorithms are

able to distinguish between vertex pairs better after a certain threshold of vertex-

per-label ratio is crossed. Another contributing factor towards a lower accuracy, for

smaller label sets, is the degree to label ratio, as discussed in Section ??. Although,

VeNoM takes care of inversion in χ2 values by replacing the target vertex degree with

that of the query node, but a graph universe with a very small label set may still

lead to value inversion. Once again, VeNoM-(2,2) reached the saturation accuracy
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faster by utilizing the look-ahead advantage for a better performance.

Query Size

With an increase in the number of vertices in the query graph, a near exponential

increase is observed in run time (Figure 5.6d). This is because it increases the

number of groups in a query. The effect of this is more pronounced in VeNoM-(2,2)

due to the increase in depth of the neighborhood considered. However, VeNoM-(2,2)

still outperforms the other VeNoM instances, which show a decrease in accuracy with

an increase in the query size. VeNoM-(2,2) shows negligible performance change for

small query sizes and a slightly higher accuracy for larger queries. This suggests that

with higher number of connections, VeNoM-(2,2) is able to create more meaningful

groups, making it more robust toward the increase in query size. On the other hand,

VeNoM-(1,1), with a single vertex per group, suffered heavily and achieved the least

accuracy.

Query Degree

To better understand the effects of query degree, the queries of size 9 were binned

into three buckets based on the average degree of the query graphs: [3.75, 4.75),

[4.75, 5.75) and [5.75, 6.75). With an increase in query complexity, no significant

change in the runtime was observed in any of the VeNoM instances (Figure 5.6e).

However, VeNoM-(2,2) exhibited a steady increase in accuracy and maintained a

significant improvement over its counterparts. Meanwhile, the accuracy for VeNoM-

(2,1), VeNoM-(3,1) and VeNoM-(1,1) dropped as the average degree of the query

graph was increased. The rate of accuracy drop was slightly lower in VeNoM-(2,1)

and VeNoM-(3,1), than in VeNoM-(1,1), suggesting slight comparative robustness.

The increase in accuracy of VeNoM-(2,2) suggests that with more neighbors, non-

trivial groups for a query node could be created, which captured the neighborhood

similarity better. Observe that the ratio of the query degree to the label is <0.65

at all times.
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Figure 5.7: Heat-map of edge-frequency between two labels for Human and BA graph

Noisy Queries

In experiments with noisy queries, VeNoM-(2,2) performed significantly better than

both VeNoM-(2,1) and VeNoM-(3,1), while VeNoM-(1,1) on average reported a rel-

atively lower accuracy. In general, accuracy for nEDel and nVDel was more than

that for nEAdd and nVAdd, respectively. This is because, in the event of deletion,

a perfect match is still guaranteed to exist, while the same cannot be when an edge

or a vertex is added to the query. This aligns with the trend seen in the real-world

graphs in Figure 5.4. However, in contrast to the performance on real-world graph

datasets, a negligible accuracy drop was observed for nLabel query set in BA graphs.

As hypothesized in Section 5.9.2, this is caused due to the absence of underlying

semantic relations of vertex labels in synthetic graphs. In synthetic graphs, the la-

bels were independent of each other and there was no semantic relationship between

them. Thus, complete matches could be found for the nLabel queries as well. In

real graphs, however, labels of vertices that have connections between them may

not be random, and, the connections among labels may form a community. We fur-

ther analyzed the frequency of connections between different labels for the dataset

Human and a similar-sized BA graph (|V | = 5K,m = 25, l = 50) using heat maps

(Figure 5.7). It was observed that for the Human dataset, the connections were con-

centrated among a handful of labels, while in the BA graph the edges were evenly

spread over all label combinations. This reinforced our theory of the existence of
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underlying semantic relations among labels in real-world graphs.

5.9.5 Discussion

Overall, our experiments depicted the following trends:

• Incorporating multi-hop information offers significant improvements in accu-

racy, as is shown by VeNoM-(2,2) and VerSaChI. This is potentially due to

the extra neighborhood information available during comparison. However,

this impacts the run time negatively.

• The strategy of aggregating multi-neighbor information has limited improve-

ment in accuracy. At one-hop level neighborhood match, a single edge based

comparison is inadequate and increasing it to two neighboring nodes results

in an improvement. However, there is no significant improvement when the

capacity is increased to three neighboring vertices from two.

• Performance comparison between VeNoM-(2,2) and VerSaChI suggests that

comparison of only two units at a time at the 2-hop level is insufficient and a

larger view of the neighborhood is required for increased accuracy. Further,

the number of groups potentially affects the run time of the algorithm and

decreases with larger group size for target graphs with a lower average degree.

This causes a slight reduction in the run time.

The above trade-offs can be considered while subgraph matching algorithms for

application-specific requirements are designed.



Chapter 6

GraphReach

Inspired by the success of deep neural models on complex data structures, GNN

models are being explored for graph matching. However, most GNN architectures

rely on neighbors alone for the message-passing mechanism, due to which they fail to

distinguish between nodes with similar neighborhoods. Consequently, for predictive

tasks that rely on the position of a node with respect to the graph, the performance

suffers.

Our goal is to design a GNN that is inductive, captures both position as well

as node attribute information in the embeddings, and overcomes the problem of

automorphism leading to identical embeddings. We emphasize that we do not claim

position information to be more important than the neighborhood structure. Rather,

the more appropriate choice depends on the problem being solved and the dataset.

For example, if homophily is the main driving factor behind a prediction task, then

embeddings based on local neighborhood structure are likely to perform well. On the

other hand, to predict whether two nodes belong to the same community, e.g., road

networks, gene interaction networks, etc., positional information is more important.

P-GNN (You et al., 2019) is the first work to address the need for an inductive

GNN that encodes position information. P-GNN randomly selects a small number of

nodes as anchor nodes. It then computes the shortest path distances of all remaining

nodes to these anchor nodes and embeds this information in a low-dimensional space.

Thus, two nodes have similar embeddings if their shortest path distances to the
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anchors are similar, as discussed in Section 1.2.4. Although P-GNN has shown

impressive improvements over existing GNN architectures in link prediction and

pairwise node classification, there is scope to improve.

6.1 Problem Formulation

We represent a graph as G = (V , E ,X ,W), where V is the set of nodes vi, with

1 ≤ i ≤ n and E is the set of edges. The attribute set X = {xv1 , · · · , xvn} has

a one-to-one correspondence with the node set V where xvi represents the feature

vector of node vi ∈ V . Similarly, W has a one-to-one correspondence with E , where

wei denotes the edge weights.

A node embedding model is a function f : V → Z that maps the node set V to a

d-dimensional vector space Z = {z1, · · · , zn}. Our goal is to learn a position-aware

node embedding model.

Definition 6.1 (Position-aware Embedding). A node embedding zv, ∀v ∈ V is

position-aware if there exists a function g(·, ·) such that d(vi, vj) = g(zi, zj), where

d(vi, vj) is the distance from vi to vj in G.

The distance d(vi, vj) should reflect the quality of all paths between vi and vj

wherein, (1) d(vi, vj) is directly proportional to the number of paths between vi and

vj, and (2) d(vi, vj) is inversely proportional to the lengths of the paths between vi

and vj. We capture these aspects in the form of reachability estimations through

random walks. Note that, d(·, ·) is not required to be a metric distance function.

Reachability estimations are similar to PageRank (Brin and Page, 1998) and

Random Walk with Restarts (Pan et al., 2004). To the best of our knowledge,

GIL (Xu et al., 2020) is the only other GNN framework that uses the concept of

reachability estimations. However, GIL uses reachability as an additional feature

along with node embeddings for node classification.
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6.2 Reachability Estimations

In a fixed-length random walk of length lw, we start from an initial node vi, and

jump to a neighboring node u through an outgoing edge e = (vi, u) with transition

probability,

p(e) =
we∑

∀e′∈N(vi)
we′

(6.1)

Here, N(vi) denotes the set of outgoing edges from vi. From node u, the process

continues iteratively in the same manner till lw jumps. If there are many short paths

from vi to vj, there is a high likelihood of reaching vj by a random walk from vi. We

utilize this property to define a similarity measure:

s(vi, vj) =

∑nw

k=1 countk(vi, vj)

lw × nw
(6.2)

Here, nw denotes the number of random walks started from vi, and countk(vi, vj)

denotes the number of times random walker visited vj in the kth random walk

starting from vi. The similarity function could also weight the nodes according

to the order they appear in a random walk.

Order-weighted Similarity

In Equation 6.2, the order in which nodes occur in the random walk does not affect

the similarity function. To incorporate this sequential aspect, we propose the use of

harmonic weighting. Formally, let o(vi, vj, k) denote the step count at which vj is

visited in the kth random walk originating from node vi; if vj was not visited, then

o(vi, vj, k) =∞. The order-weighted similarity is defined as:

so(vi, vj) =
nw∑
k=1

1

o(vi, vj, k)
(6.3)

Empirically, minimal change in accuracies was observed between the two metrics,
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Symbol Dimensions Description
X = {xv | ∀v ∈ V} n× d Original node attributes
Hl = {hlv | ∀v ∈ V} n× dhid Feature matrix at layer l
Ml = {Ml

v | ∀v ∈ V} n× k × dhid Message Tensor at layer l
Wl

M 2 · dhid × dhid Transform Ml

alatt 2 · dhid × 1 Attention vector at layer l
Z = {zv | ∀v ∈ V} n× k Output embeddings
WZ dhid × 1 Transforms ML to Z

Table 6.1: Matrix notations and descriptions.

and hence we use the similarity function based on frequency counts. From s(vi, vj),

one may define d(vi, vj) = 1 − s(vi, vj). However, we directly work with similarity

s(·, ·) since d(vi, vj) is not explicitly required in our formulation.

6.3 GraphReach

The symbols and notations used throughout this chapter are summarized in Table

6.1. All the matrix and vector notations are denoted in bold letters by convention.

6.3.1 The Architecture

Algorithm 1 outlines the pseudocode and Figure 6.1 pictorially depicts the architec-

ture. In addition to the hyper-parameters and message passing functions, the input

to Algorithm 1 includes the graph and k anchor nodes. The details of the anchor

selection procedure are discussed in Section 6.3.2. In the initial layer, the embedding

of a node v is simply its attribute vector xv (line 1). In each hidden layer, a set

of messages, Ml, is computed using the message computing function F(v, a, hlv, hla)

between each node-anchor pair (details in Section 6.3.3) (lines 2-6). The component

Ml
v[i] in Ml represents the message received by node v from the ith anchor node.

These messages are then aggregated using an aggregation function S (line 7), which

we will discuss in detail in Section 6.3.4. The aggregated messages thus obtained

are propagated to the next layer. In the final layer, the set of messages for each

node, i.e., Ml
v, is linearly transformed through a trainable weight matrix WZ (line
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Figure 6.1: The architecture of GraphReach.

8).

Algorithm 1 GraphReach
Input: Graph G = (V , E ,X ,W); Anchors {ai}; Message computation function F ;
Message aggregation function S; Number of layers L; Non-linear function σ
Output: Node embedding zv, ∀v ∈ V

1: h0
v ← xv, ∀v ∈ V

2: for l = 1, · · · , L do
3: for v ∈ V do
4: for i = 1, · · · , k do
5: M̂

l

v[i]← F(v, ai, hl−1
v , hl−1

ai
) ▷ Message Computation

6: Ml
v = (⊕ai∈A M̂

l

v[i]) ·Wl
M ▷ Concatenation: Eq. 6.10

7: hlv ← S
(
Ml

v

)
▷ Message Aggregation: Eq. 6.11 and Eq. 6.13

8: return zv ∈ Rk ← σ(ML
v .WZ), ∀v ∈ V

6.3.2 Anchor Selection

Anchors act as our reference points while encoding node positions. It is therefore

imperative to select them carefully. Selecting two anchors that are close to each

other in the graph is not meaningful since the distance to these anchors from the

rest of the nodes would be similar. Ideally, the anchors should be diverse as well as

reachable from a large portion of nodes.

Formally, let R be the set of all random walks performed across all nodes in

V . We represent the reachability information in the form of a bipartite graph B =

(V1,V2, EB). Here, V1 = V2 = V . There is an edge e = (u, v) ∈ EB, u ∈ V1, v ∈ V2
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if there exists a walk in R that starts from v and reaches u. The reachability set of

a subset of nodes A is:

ρ(A) = {v | (u, v) ∈ EB, u ∈ A, v ∈ V2} (6.4)

Our objective is to find the set of k anchors A∗ ⊆ V1, |A∗| = k, that maximizes

reachability. Specifically,

A∗ = arg max
A⊆V1,|A|=k

{|ρ(A)|} (6.5)

Lemma 6.2. The maximization problem in Eq. 6.5, performed on the bipartite graph

formed on the reachability set, is NP-hard.

Proof. We reduce the Maximum Coverage problem (MCP) to the problem of

anchor selection.

Definition 6.3 (Maximum Coverage). Given a collection of subsets S = {S1, · · · , Sm}

from a universal set of items U = {t1, · · · , tn} and budget k, choose at most k subsets

T ∗ ⊆ S such that the coverage of items ∪∀Si∈T ∗Si is maximized.

MCP is known to be NP-hard (Cormen et al., 2009).

Given an arbitrary instance of MCP, we construct a bipartite graph B = (V1,V2, EB),

where we have a node ui ∈ V1 corresponding to each subset Si ∈ S, a node vj ∈ V2

corresponding to each item tj ∈ U and an edge e = (ui, vj) ∈ EB if Si contains

item tj. With this construction, it is easy to see that A∗ ⊆ V1, |A∗| = k maximizes

reachability, i.e., | ρ(A∗) |, if and only if selecting the subsets corresponding to the

nodes in A∗ maximizes coverage of items from U . □

Lemma 6.4. For any given set of nodes A, f(A) = |ρ(A)| is monotone and sub-

modular.

Monotonicity: The function f(A) = |ρ(A)| is monotone since adding any node

from u ∈ V1 toA can only bring in new neighbors from V2. Hence, ρ(A∪{u}) ⊇ ρ(A)

.
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Submodularity: A function f(S) is submodular if the marginal gain from

adding an element to a set S is at least as high as the marginal gain from adding it

to a superset of S. Mathematically, it satisfies:

f(S ∪ {o})− f(S) ≥ f(T ∪ {o})− f(T ) (6.6)

for all elements o and all pairs of sets S ⊆ T .

We prove reachability maximization is submodular by contradiction.

Proof by contradiction:

Assume,

f(T ∪ {v})− f(T ) > f(A ∪ {v})− f(A) (6.7)

where A and T are subsets of V1, such that A ⊆ T , and v ∈ V1 of bipartite

graph B. Given that f(A) is monotone, Equation 6.7 is feasible only if:

ρ({v}) \ ρ(T ) ⊇ ρ({v}) \ ρ(A)

or, A ̸⊆ T (6.8)

which contradicts the assumption that A ⊆ T . □

For monotone and submodular optimization functions, the greedy-hill climbing

algorithm provides a (1 − 1/e) approximation guarantee (Nemhauser et al., 1978).

We, thus, follow the same strategy and iteratively add the node that provides highest

marginal reachability (Algorithm 2).

Algorithm 2 outlines the pseudocode for the greedy anchor selection procedure.

We start from an empty anchor set A (line 1), and in each iteration, add the node

u ∈ V1 that has the highest (marginal) degree in B to A (lines 3-4). Following this

operation, we remove u from V1 and all neighbors of u from V2 (lines 5-6). This

process repeats for k iterations (line 2).



102

Algorithm 2 Greedy Anchor Selection
Input: Graph B = (V1,V2, EB); number of anchors: k
Output: A: a set of k anchors (nodes)

1: A ← ∅
2: while |A| < k do
3: u∗ ← arg maxu∈V1

{|ρ(A ∪ {u})| − |ρ(A)|}
4: A ← A∪ {u∗}
5: V2 ← V2 \ ρ(u∗)
6: V1 ← V1 \ {u∗}
7: return A

Corollary 6.5. If set A is the output of Algorithm 2, then | ρ(A) |≥ (1− 1/e) | A∗ |,

where A∗ is the anchor set of size k that maximizes reachability coverage.

Proof. Follows from Lemma 6.4.

Modeling Reachability Frequency.

The above approach models reachability as a binary occurrence; even if there exists

just one walk where v ∈ V2 reaches u ∈ V1, an edge (u, v) is present in B. It does not

incorporate the frequency with which u is visited from v. To capture this aspect,

we randomly sample X% of the walks from R and form the bipartite graph only on

this sampled set. Note that the down-sampling does not require the bipartite graph

to be fully connected. Algorithm 2 is then run to select anchors on this bipartite

graph. This process is repeated multiple times by drawing multiple samples of the

same size from R and the final anchor set consists of nodes that are selected in the

answer sets the highest number of times. In our experiments, we sample 5 subsets

with X = 30%.

6.3.3 Message Computation

The message computation function F
(
v, a, hlv, hla

)
should incorporate both the po-

sition information of node v with respect to the anchor set A as well as the node

attributes. While node attributes may provide important information that may be

useful in the eventual prediction task, position information, in the form of reach-

ability estimations, captures the location of the node in the global context of the
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graph. To encode these dual needs, F
(
v, a, hlv, hla

)
is defined as follows.

F
(
v, a, hlv, hla

)
=
((
s(v, a)× hlv

)
∥
(
s(a, v)× hla

))
(6.9)

where ∥ denotes the concatenation of vectors. The function F takes as input

a node v, an anchor a and their respective layer attributes, hlv and hla. It returns

a message vector, which is a weighted aggregation of their individual attributes

in proportion to their reachability estimations (Equation 6.2). Observe that, the

reachability estimations are used in both directions to account for an asymmetric

distance function.

Due to concatenation, the output message vector has dimensions 2 · dhid, where

dhid is the dimension of the node embeddings in the hidden layers. To linearly

transform the message vector back into Rdhid , we multiply it with a weight vector

Wl
M. The complete global structure information for node v is encompassed in the

message matrix Ml
v (⊕ denotes row-wise stacking of message vectors).

Ml
v =

(
⊕
a∈A
F
(
v, a, hlv, hla

) )
·Wl

M (6.10)

6.3.4 Message Aggregation

To compute the hidden representation of nodes, messages corresponding to anchors

are aggregated for each node. We propose two aggregation schemes.

1. Mean Pool (M): In this, a simple mean of the message vectors are taken

across anchors.

SM(Ml
v) =

1

k

k∑
i=1

Ml
v[i] (6.11)

2. Attention Aggregator (A): In mean pooling, all anchors are given equal

weight. Theorizing that the information being preserved can be enhanced by

capturing the significance of an anchor with respect to a node, we propose to
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calculate the significance distribution among anchors for each node. Following

the Graph Attention Network (GAT) architecture (Velickovic et al., 2018),

we compute attention coefficients of anchors for an anchor-based aggregation.

The attention coefficient of the ith anchor ai is computed with trainable weight

vector alatt and weight matrix Wl
att. For node v, the attention weight with

respect to anchor i is

αv[i] = sm
(
σatt

(
(hlv ·Wl

att ∥Ml
v[i] ·Wl

att) · alatt
))

(6.12)

Here, sm denotes the softmax function. As followed in GAT architecture, we

use LeakyReLU as the non-linear function σatt (with negative input slope 0.2).

Finally, the messages are aggregated across anchors using these coefficients.

SA(Ml
v) =

k∑
i=1

αv[i]×Ml
v[i] ·Wl

att + hlv ·Wl
att (6.13)

6.3.5 Hyper-parameters for Reachability Estimation

Reachability information relies on two key random walk parameters: the length lw of

each walk, and the total number of walks nw. If lw is too short, then we do not gather

information with respect to anchors more than lw-hops away. With nw, we allow

the walker to sample enough number of paths so that our reachability estimations

are accurate and holistic. We borrow an important theorem from (Wadhwa et al.,

2019) to guide our choice of lw and nw.

Theorem 6.6. If there exists a path between two nodes u and v in a graph, with

1 − 1/n probability the random walker will find the path if the number of random

walks conducted, nw, is set to Θ(
3
√
n2 lnn) with the length of each random walk, lw,

being set to the diameter of the graph.
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6.3.6 Complexity Analysis

We conduct nw random walks of length lw for all the n nodes of the graph; this

requires O(nw · lw · n) time. For anchor set selection, we sample random walks

multiple times and select k anchors using the resulting bipartite graphs formed. The

complexity of sampling walks is O(n ·nw) while selecting the anchors takes O(k+k ·

log k) = O(k · log k) operations. Considering that each node communicates with k

anchors, there are O(n · k) message computations. The aggregation of messages also

requires O(n · k) operations owing to k messages being aggregated for each of the n

nodes. The attention aggregator has an additional step devoted to the computation

of attention coefficients which takes O(n · k) time as well.

6.4 Experiments

In this section, we benchmark GraphReach and establish that GraphReach provides

up to 40% relative improvement over state-of-the-art GNN architectures.

6.4.1 Setup

All the experiments have been performed on an Intel(R) Xeon(R) Silver 4114 CPU

with a clock speed of 2.20GHz. The GPU used was NVIDIA GeForce RTX 2080 Ti

(12GB of FB memory). We use PyTorch 1.4.0 and NetworkX 2.3 on CUDA 10.0.

GraphReach is implemented in Python 3.7.6. The codebase of all other benchmarked

models is obtained from the respective authors.

Datasets

Below we explain the semantics of each of these datasets.1 A summary of the

characteristics of the datasets is given in Table 6.2

• Grid is a synthetic 2D grid graph with 20× 20 = 400 nodes and no features.
1All the datasets have been taken from https://github.com/JiaxuanYou/P-GNN.

https://github.com/JiaxuanYou/P-GNN


106

• Communities is the connected caveman graph (Watts, 1999). It has 20 com-

munities of 20 nodes each.

• PPI is a protein-protein interaction network containing 24 graphs (Zitnik and

Leskovec, 2017). Each graph on average has 3000 nodes and 33000 edges.

Each node is characterized with a 50-dimensional feature vector.

• Email-Complete is a real-world communication graph from SNAP (Leskovec

et al., 2007).

• Email dataset is a set of 7 graphs obtained by dividing Email-Complete and

has 6 communities. The label of each node denotes which community it belongs

to.

• Protein is a real graph from (Borgwardt et al., 2005). It contains 1113 com-

ponents. Each component on average contains 39 nodes and 73 edges. Each

node has 29 features and is labeled with the functional role of the protein.

• CoRA is a standard citation network of machine-learning papers with 2.7K

documents, 5.4K links and 1433 distinct word vector attributes, divided into

seven classes (McCallum et al., 2000).

• CiteSeer is another benchmark citation graph with 3.3K documents, 4.7K links

and 3703 distinct word vector attributes, divided into six classes (Giles et al.,

1998).

Baselines

We measure and compare the performance of GraphReach with five baselines:

1. P-GNN (You et al., 2019) 2. GCN (Kipf andWelling, 2017) 3. GraphSAGE (Hamil-

ton et al., 2017) 4. GAT (Velickovic et al., 2018) 5. GIN (Xu et al., 2019)

Predictive Tasks

GraphReach is evaluated on three different tasks.
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Datasets #Nodes #Edges #Labels Diameter #Attributes
Grid 400 760 - 38 -
Communities 400 3.8K 20 9 -
PPI 56.6K 818K - 8 50
Email-Complete 986 16.6K 42 7 -
Email 920 7.8K 6 7 -
Protein 43.4K 81K 3 64 29
CoRA 2.7K 5.4K 7 19 1433
CiteSeer 3.3K 4.7K 6 28 3703

Table 6.2: Characteristics of graph datasets used.

• Link Prediction (LP): Given a pair of nodes in a graph, the task is to

predict whether there exists a link (edge) between them.

• Pairwise Node Classification (PNC): Given two nodes, the task is to

predict whether these nodes belong to the same class label or come from

different labels.

• Node Classification (NC): For each node, the task is to predict the class/label

of the node.

Loss

We evaluate GraphReach on the prediction tasks of Link Prediction (LP) and Pair-

wise node classification (PNC) using the Binary Cross Entropy (BCE) loss with

logistic activation, and on Node Classification (NC) using the Negative Log Likeli-

hood (NLL) loss.

Setting

For LP, we evaluate in both inductive and transductive settings, whereas for PNC,

only inductive setting is used.

• Transductive learning: The nodes are assigned a fixed ordering. Conse-

quently, the model needs to be re-trained if the ordering changes. Since the

ordering is fixed, one-hot vectors can be used as unique identifiers of nodes.

We use these one-hot vectors to augment the node attributes.
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• Inductive learning: Only the node attributes are used since under this

scenario, the model must generalize to unseen nodes.

Train-Validation-Test Setup

For all prediction tasks, the datasets are individually split in the ratio of 80:10:10

for training, validation and testing, respectively. In LP, the positive set contains

actual links present in the graph. The negative set is constructed by sampling an

equal number of node pairs that are not linked. A similar strategy is also applied

for PNC. In NC, we randomly sample train, validation and test nodes with their

corresponding labels. We always ensure that the test data is unseen. When a graph

dataset contains multiple graphs, we divide each component into train, validation

and test sets.

Each experiment (train and test) is repeated 10 times following which we report

the mean ROC AUC and the standard deviation.

Default Parameters and Design Choices.

Unless specifically mentioned, we set the number of anchors (k) as log2 n. While our

experiments reveal that a smaller number of anchors is sufficient, since P-GNN uses

log2 n anchors, we keep it the same. The length of each random walk, lw, is set to

graph diameter, and the number of walks nw as 50. We also conducted experiments

to analyze how these parameters influence the prediction accuracy of GraphReach.

We use Attention aggregation (Equation 6.13) and simple random walk counts

as the similarity function (Equation 6.2) to compare with the baselines.

Common Parameters

The number of hidden layers is set to 2. The hidden embedding dimension is set

to 32. All models are trained for 2000 epochs. The learning rate is set to 0.01 for

the first 200 epochs and 0.001 thereafter. The drop-out parameter is set to 0.5.

Batch size is kept to 8 for Protein and PPI, and 1 for all other datasets. The final
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Models Communities Email Email-Complete Protein
GCN 0.520± 0.025 0.515± 0.019 0.536± 0.006 0.515± 0.002
GraphSAGE 0.514± 0.028 0.511± 0.016 0.508± 0.004 0.520± 0.003
GAT 0.620± 0.022 0.502± 0.015 0.511± 0.008 0.528± 0.011
GIN 0.620± 0.102 0.545± 0.012 0.544± 0.010 0.523± 0.002
P-GNN -F 0.997± 0.006 0.640± 0.037 0.630± 0.031 0.729± 0.176
P-GNN -E 1.000± 0.001 0.640± 0.029 0.637± 0.037 0.631± 0.175

GraphReach 1.000± 0.000 0.949± 0.009 0.935± 0.006 0.904± 0.003

(a) Pairwise Node Classification (PNC)

Models Grid-T Communities-T Grid Communities PPI
GCN 0.698± 0.051 0.981± 0.004 0.456± 0.037 0.512± 0.008 0.769± 0.002
GraphSAGE 0.682± 0.050 0.978± 0.003 0.532± 0.050 0.516± 0.010 0.803± 0.005
GAT 0.704± 0.050 0.980± 0.005 0.566± 0.052 0.618± 0.025 0.783± 0.004
GIN 0.732± 0.050 0.984± 0.005 0.499± 0.054 0.692± 0.049 0.782± 0.010
P-GNN -F 0.637± 0.078 0.989± 0.003 0.694± 0.066 0.991± 0.003 0.805± 0.003
P-GNN -E 0.834± 0.099 0.988± 0.003 0.940± 0.027 0.985± 0.008 0.808± 0.003

GraphReach 0.945± 0.021 0.990± 0.005 0.956± 0.014 0.991± 0.003 0.810± 0.002

(b) Link Prediction (LP)

Table 6.3: ROC AUC evaluation of GraphReach with benchmarks. (Grid-T and
Communities-T indicates performance in transductive settings. P-GNN -E uses the exact
shortest path distance to all anchors while P-GNN -F is a fast variant of P-GNN that
uses truncated 2-hop shortest path distance.)

embeddings for PNC and LP tasks are passed through 1-layer MLPs characterized

by label(v, u) = σ
(
zv
T zu
)
where σ is the sigmoid activation function. The final

embeddings for NC are passed through LogSoftmax layer to get the log-probabilities

of each class. In both LP and PNC, the input is a pair of nodes, while in NC it is

a single node. The neural network parameters are tuned using the Adam optimizer

(Kingma and Ba, 2015).

6.4.2 Overall Results

Pairwise Node Classification (PNC)

Table 6.3a summarizes the performances in PNC. We observe a dramatic perfor-

mance improvement by GraphReach over all existing GNN models. While P-

GNN clearly established that encoding global positions of nodes helps in PNC,

GraphReach further highlights the need to go beyond the shortest paths. Except

in Communities, the highest accuracy achieved by any of the baselines is 0.73. In

sharp contrast, GraphReach pushes the ROC AUC above 0.90, which is a significant
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Dataset Task Training Time (in sec) Inference Time (in sec)
P-GNN -E GraphReach P-GNN -E GraphReach

CoRA
LP

326 111 0.01 0.02
CiteSeer 537 125 0.01 0.01
PPI 5, 901 2,980 0.20 0.20
CoRA

PNC
405 265 0.05 0.05

CiteSeer 645 381 0.07 0.06
Protein 13,552 11,254 0.90 0.90

Table 6.4: Training and Inference time comparison for GraphReach

≈ 40% relative improvement, on average, over the state-of-the-art.

Link Prediction (LP)

Table 6.3b presents the results for LP. Consistent with the trend observed in PNC,

GraphReach outperforms other GNNs across inductive and transductive settings.

P-GNN and GraphReach are significantly better than the rest of the architectures.

This clearly indicates that position-aware node embeddings help. GraphReach being

better than P-GNN suggests that a holistic approach of encoding position with

respect to all paths is necessary.

The second observation from Table 6.3b is that the performance of position-

unaware architectures are noticeably better in a transductive setting. Since the

transductive setting allows unique identification of nodes through one-hot encod-

ings, traditional GNN architectures are able to extract some amount of position

information, which helps in the prediction. In contrast, for both P-GNN and

GraphReach, one-hot encodings do not impart any noticeable advantage as position

information is captured through distances to anchors.

We also compare the time taken by the two best performing models in Table

6.4. We observe that, on average, GraphReach is 2.5 times faster than P-GNN .

P-GNN is slower since it samples a new set of anchors in every layer and epoch,

which necessitates the need to recompute distances to all anchors. In contrast,

GraphReach uses the same set of strategically chosen anchors through all layers.

The inference times of both techniques are less than a second and, hence, are not a
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Task Dataset GCN GraphSAGE GAT GIN P-GNN GraphReach
S+T S S+T S S+T S S+T S S+T S S+T S

LP CoRA 0.86 0.59 0.85 0.53 0.86 0.51 0.86 0.59 0.81 0.77 0.83 0.84
LP CiteSeer 0.87 0.61 0.85 0.56 0.87 0.56 0.86 0.68 0.77 0.76 0.77 0.74

PNC CoRA 0.98 0.50 0.96 0.50 0.98 0.51 0.98 0.52 0.86 0.59 0.96 0.77
PNC CiteSeer 0.96 0.51 0.95 0.51 0.96 0.50 0.96 0.53 0.77 0.57 0.91 0.61
NC CoRA 0.92 0.52 0.92 0.50 0.90 0.50 0.90 0.54 0.73 0.50 0.84 0.86
NC CiteSeer 0.82 0.52 0.82 0.50 0.81 0.50 0.82 0.53 0.73 0.55 0.75 0.71

Table 6.5: ROC AUC comparison of position-aware and traditional GNNs (‘S’ denotes
the version containing only the graph structure and ‘S+T’ denotes structure with node
attributes.)

computational concern.

6.4.3 Difference from Neighborhood-based GNNs

We conducted experiments on attributed graph datasets, with and without at-

tributes for prediction tasks. Table 6.5 presents the results for CoRA and CiteSeer

on LP, PNC and NC.

In addition to the network structures, both CoRA and CiteSeer, are also accom-

panied by binary word vectors characterizing each node. When the word vectors are

ignored, the performance of neighborhood-aggregation based GNNs are significantly

inferior (≈ 25%) to GraphReach. When supplemented with word vectors, they out-

perform GraphReach (≈ 10% better). This leads to the following conclusions.

1. Position-aware GNNs are better at utilizing the structural information.

2. Neighborhood-aggregation based GNNs may be better in exploiting the feature

distribution in the neighborhood. (This is not always though, e.g., in PPI

and Protein, GraphReach is better than the baselines even when attribute

information is used as seen in Tables 6.3a and 6.3b).

3. The two approaches are complementary in nature and, therefore, good candi-

dates for ensemble learning.

To elaborate, neighborhood aggregation based architectures rely on homophily

(Zhu et al., 2020). Consequently, if the node property is a function of neighborhood

attribute distribution, then neighborhood aggregation performs well. On the other
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Dataset Task P-GNN GraphReach
Bf Af � Bf Af �

Communities PNC 0.92 0.82 −0.10 1.00 0.98 −0.02
Communities LP 1.00 0.89 −0.11 1.00 1.00 −0.00

Table 6.6: Robustness to adversarial attacks. (Bf and Af indicate ROC AUC before and
after collusion respectively, while ∆ denotes the change in accuracy due to collusion.)

hand, in LP, even if the local neighborhoods of two distant nodes are isomorphic,

this may not enhance their chance of having a link. Rather, the likelihood increases

if the two nodes have many neighbors in common. When two nodes have com-

mon neighbors, their distances to the anchors are also similar, and this positional

information leads to improved performance.

6.4.4 Adversarial Attacks

We assume the standard black-box adversarial setup where the attacker has knowl-

edge of only the graph and can modify it through the addition or deletion of edges (Li

et al., 2020; Chang et al., 2020). Let G = (V , E) be the test graph which has a col-

luding subset of nodes C ⊆ V . The nodes in C can add as many edges as needed

among them so that predictions on C are inaccurate.

For PNC, we randomly sample 10% nodes from the unseen test graph and form

a clique among these colluding nodes. For LP, we randomly sample 10% of the node

pairs from the unseen test graph such that they do not have an edge between them.

From this set, we select the top-2% of the highest degree nodes and connect them

to the remaining colluding nodes through an edge. This makes the diameter of the

colluding group at most 2.

We perform prediction using pre-trained models of both P-GNN and GraphReach

on the test graph and measure the ROC AUC on the colluding group. This process

is repeated with 5 different samples of colluding groups and the mean accuracy is

reported. If the model is robust, despite the collusion, its prediction accuracy should

not suffer.

As visible in Table 6.6, the impact on the accuracy of GraphReach is minimal.
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Models Communities Email Email-Complete Protein
GR-A 1.000± 0.000 0.949± 0.009 0.935± 0.006 0.904± 0.003
GR-M 1.000± 0.000 0.938± 0.017 0.945± 0.004 0.916± 0.008
GR-M− 0.500± 0.000 0.500± 0.000 0.500± 0.000 0.559± 0.007

(a) Pairwise Node Classification (PNC)

Models Grid-T Communities-T Grid Communities PPI
GR-A 0.945± 0.021 0.990± 0.005 0.956± 0.014 0.991± 0.003 0.810± 0.002
GR-M 0.940± 0.018 0.994± 0.003 0.931± 0.020 0.993± 0.003 0.830± 0.004
GR-M− 0.542± 0.071 0.888± 0.046 0.500± 0.000 0.500± 0.000 0.519± 0.026

(b) Link Prediction (LP)

Table 6.7: ROC AUC in PNC and LP for ablation study over aggregation functions.
(GR stands for GraphReach.)

On the other hand, P-GNN receives more than 10% relative drop in the perfor-

mance. This result highlights another advantage of reachability estimations. Since

GraphReach incorporates all paths in its position-aware embeddings, causing a sig-

nificant perturbation in position with respect to all paths in the network is difficult.

In the case of P-GNN , perturbing shortest paths is relatively easier and hence there

is a higher impact on the performance.

6.4.5 Ablation Study

Mean Pool versus Attention

In the first two rows of Table 6.7, we compare the performance of GraphReach with

Attention (GraphReach-A) and Mean Pool (GraphReach-M) aggregation functions.

As clearly evident, the performance is comparable. In the mean pool, the mes-

sage from each anchor is weighted equally, while when an attention layer is used,

GraphReach learns an additional importance weight for each anchor to aggregate

messages. The comparable performance of the Mean Pool and Attention shows that

the similarity encoded in the message from each anchor is enough to learn mean-

ingful embeddings; the marginal gain from an additional attention layer is minimal.
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Models Communities Email Email-Complete Protein
GraphReach-OA 1.000± 0.000 0.937± 0.009 0.936± 0.004 0.906± 0.004
GraphReach-OM 1.000± 0.000 0.949± 0.014 0.934± 0.004 0.909± 0.006

(a) Pairwise Node Classification

Models Grid-T Communities-T Grid Communities PPI
GraphReach-OA 0.935± 0.025 0.990± 0.005 0.956± 0.014 0.992± 0.004 0.822± 0.007
GraphReach-OM 0.940± 0.025 0.993± 0.003 0.951± 0.017 0.993± 0.004 0.825± 0.003

(b) Link Prediction

Table 6.8: ROC AUC in PNC and LP for ablation study over reachability estimation
function. GraphReach-OA and GraphReach-OM denote Mean Pool and Attention aggre-
gation, respectively, with order-weighted reachability estimation (Equation 6.3).

To further substantiate this claim, we alter the Equation 6.9 to

F
(
v, a, hlv, hla

)
= hlv ∥ hla

i.e., contributions of all anchors are made equal. The variant GraphReach-M−

presents the performance with this modification; as evident, there is a massive drop

in accuracy.

Order-weighted Similarity

Table 6.8 presents the performance achieved with the order-weighted similarity func-

tion. We observe a minimal change in accuracies when compared to using frequency

counts (Equation 6.2). A random walker is more likely to visit nearby nodes from

the source than those located far away. Consequently, the early nodes that receive

higher weights in order-weighted similarity are often the same ones that are visited

repeatedly. Hence, order-weighting is correlated to count frequency.
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Figure 6.2: Impact of (a) walk length (b) number of walks and (c-d) number of anchors
for PNC and LP, on the accuracy of GraphReach.

6.4.6 Impact of Parameters

Random Walk Length, lw

Figure 6.2a presents the result on three datasets covering both PNC and LP. Results

on the remaining datasets are provided in Table 6.9. On Communities and Email-

Complete, the impact of lw is minimal. For small datasets such as Communities,

Email, Email-Complete and PPI, the ROC AUC scores start saturating when lw

is around 10, which is approximately the diameter of the datasets. The accuracy

on the Grid dataset saturates for lw = 20 (diameter is 38)while in Protein, the

accuracy saturates at around lw = 40. This is a direct consequence of the property

that Protein has a significantly larger diameter of 64 (see Table 6.2). Recall from our

discussion in Section 6.3.5 that setting lw to the graph diameter is recommended for

ensuring accurate reachability estimations. The trends in Figure 6.2a substantiate

this theoretical result.
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lw Communities Email Email-Complete Protein
5 1.000± 0.000 0.953± 0.011 0.922± 0.003 0.704± 0.167
10 1.000± 0.000 0.955± 0.015 0.940± 0.007 0.777± 0.168
20 1.000± 0.000 0.955± 0.010 0.934± 0.007 0.848± 0.140

40 1.000± 0.000 0.922± 0.020 0.937± 0.008 0.916± 0.004
80 1.000± 0.000 0.927± 0.011 0.936± 0.005 0.918± 0.007
100 1.000± 0.000 0.921± 0.022 0.943± 0.003 0.916± 0.004

(a) Pairwise Node Classification

lw Grid-T Communities-T Grid Communities PPI
5 0.921± 0.033 0.989± 0.005 0.938± 0.021 0.995± 0.002 0.815± 0.006
10 0.922± 0.015 0.991± 0.003 0.939± 0.011 0.992± 0.002 0.827± 0.005
20 0.951± 0.014 0.993± 0.002 0.938± 0.017 0.989± 0.002 0.833± 0.001

40 0.952± 0.013 0.991± 0.003 0.948± 0.020 0.995± 0.001 0.830± 0.004
80 0.920± 0.033 0.993± 0.004 0.940± 0.015 0.992± 0.004 0.823± 0.004
100 0.938± 0.026 0.992± 0.003 0.935± 0.029 0.994± 0.002 0.821± 0.005

(b) Link Prediction

Table 6.9: Effect of the length of random walk on the accuracy of GraphReach.

Number of Random Walks, nw

Figure 6.2b presents the results. As expected, with a higher number of walks, the

accuracy initially improves and then saturates. As discussed earlier in Section 6.3.5,

theoretically, the number of random walks conducted is proportional to the number

of nodes in the graph. The trend in Figure 6.2b is consistent with this result. The

saturation point for all the datasets was achieved for a small number of random

walks as shown in Table 6.10.

Number of Anchors and Anchor Selection Strategy

Figures 6.2c and 6.2d present the results with varying number of anchors as a per-

centage of the dataset and different anchor selection strategies. In addition to the

default anchor selection strategy, we evaluate the accuracy obtained when an equal

number of anchors are selected randomly. Two key properties emerge from this

experiment. First, as the number of anchors increases, the accuracy improves till a

saturation point. This is expected since with more anchors we have more reference
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nw Communities Email Email-Complete Protein
1 0.999± 0.002 0.882± 0.018 0.765± 0.014 0.700± 0.165
5 1.000± 0.000 0.946± 0.007 0.901± 0.008 0.841± 0.140
10 1.000± 0.000 0.909± 0.030 0.920± 0.009 0.911± 0.004
20 1.000± 0.000 0.950± 0.014 0.937± 0.003 0.915± 0.007

50 1.000± 0.000 0.949± 0.016 0.941± 0.003 0.914± 0.002
75 1.000± 0.000 0.936± 0.008 0.941± 0.005 0.916± 0.003
100 1.000± 0.000 0.932± 0.021 0.939± 0.004 0.920± 0.004

200 1.000± 0.000 0.955± 0.007 0.940± 0.004 0.916± 0.003
500 1.000± 0.000 0.947± 0.006 0.948± 0.004 0.914± 0.006

(a) Pairwise Node Classification

nw Grid-T Communities-T Grid Communities PPI
1 0.739± 0.048 0.988± 0.006 0.805± 0.036 0.968± 0.013 0.624± 0.028
5 0.920± 0.021 0.991± 0.004 0.898± 0.009 0.992± 0.002 0.790± 0.006
10 0.926± 0.023 0.992± 0.002 0.941± 0.023 0.992± 0.002 0.812± 0.003
20 0.935± 0.012 0.993± 0.006 0.932± 0.019 0.989± 0.002 0.825± 0.005

50 0.924± 0.026 0.990± 0.003 0.946± 0.018 0.988± 0.002 0.834± 0.002
75 0.932± 0.013 0.990± 0.004 0.961± 0.017 0.996± 0.001 0.832± 0.005
100 0.949± 0.010 0.992± 0.002 0.955± 0.016 0.992± 0.004 0.829± 0.004

200 0.926± 0.018 0.993± 0.002 0.925± 0.018 0.990± 0.002 0.824± 0.003
500 0.938± 0.005 0.994± 0.001 0.938± 0.018 0.992± 0.004 0.818± 0.006

(b) Link Prediction

Table 6.10: Effect of the number of walks on the accuracy of GraphReach.

points to accurately encode node positions. Second, the proposed anchor selection

strategy is clearly better than random anchor selection. More importantly, the pro-

posed anchor selection strategy saturates at around 2.5% compared to 5% in random.

Recall that the dimension of the final embeddings, i.e., the final layer, is equal to

the number of anchors. Consequently, this experiment highlights that high-quality

embeddings can be obtained within a low-dimensional space. A low dimension is

preferred in various tasks such as indexing and querying of multi-dimensional points,

due to the adverse impacts of curse-of-dimensionality (Samet, 2006).





Chapter 7

Conclusions and Future Work

In this thesis, we identify the need for a parameter-free approximate subgraph match-

ing framework for both deterministic and probabilistic graphs. To this end, we

propose two ASM frameworks based on statistical significance test: VerSaChI for

deterministic graphs and ChiSeL for probabilistic input graphs. Additionally, we

propose a novel position-aware node embedding model, GraphReach, which is par-

ticularly useful for subgraph matching neural models that rely on node embedding

aggregation to achieve the final graph embedding. As a part of our research, we

conducted a study on VeNoM, a proposed variant of an existing ASM approach,

VELSET. Our experimental study involved varying the depth and breadth of the

neighborhood considered during a match, and we observed that an integrated ap-

proach with both breadth and depth of the neighborhood performs better.

The VerSaChI ASM framework for deterministic graphs performs a two-hop

neighborhood similarity computation between the query node and the input vertex

during the search process. To capture the underlying distribution of the input

graph, the one-hop similarity of input vertices is computed and characterized into

fine buckets using Chebyshev’s Inequality. For the two-hop similarity computation,

the one-hop similarity of neighbors of candidate vertices with query nodes is also

considered, and their deviation from the expected value is computed. The candidate

matches are expanded to a solution through a greedy approach. The experiments

show significant improvements in terms of accuracy compared to state-of-the-art
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methods, as well as robustness to noise.

ASM in probabilistic input graphs requires an enumeration of each possible world

to search for a feasible subgraph match, making it a challenge. Our proposed frame-

work, ChiSeL, avoids expensive possible world enumeration based on insights. The

chi-squared statistic is used to quantify the label and structural overlap of the candi-

date input vertex with the query node and a greedy neighborhood search is used to

arrive at the best possible solution. Empirical results show that ChiSeL was highly

accurate and efficient on large-scale graphs, reporting an accuracy of 84% with an

average runtime of less than a second on billion-edge protein-protein interaction

networks.

During our investigation into the factors affecting the performance of an ASM

approach, we discovered a limitation in VELSET, where in some cases, input vertices

were penalized for having a higher degree. To address this limitation, we proposed

VeNoM, which is an enhancement over VELSET, and created various instances of

VeNoM by adjusting the depth and breadth of the neighborhood considered during a

match. Our extensive experiments, along with comparisons with other state-of-the-

art algorithms, revealed that increasing the depth of the neighborhood comparison

improves accuracy at the expense of longer runtime, while breadth has little effect

as long as it is greater than a single vertex, meaning that a single edge is the unit

of comparison.

As part of our exploration of parameter-free ASM paradigms, we investigated

neural models for subgraph retrieval. Such models often obtain a graph embedding

from its constituent node embeddings. In this context, we introduce GraphReach,

an inductive graph neural network that generates position-aware node embeddings.

These embeddings encode the location of the nodes within the global context of

the graph by using a set of selected anchor nodes. The model employs a random

walk based reachability distance metric and a diversified anchor selection strategy,

making it more holistic, closely aligned with real-world semantics, and robust against

adversarial attacks. Experimental results show that compared to state-of-the-art
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GNN architectures, GraphReach achieved up to a 40% relative improvement in

accuracy.

The development and application of the approximate subgraph matching algo-

rithms presented in this thesis exhibit the potential of statistical significance match-

ing. Moreover, their versatility and effectiveness, as shown by experiments done on

protein-protein interaction dataset, open up new avenues for applications in biolog-

ical research for drug discovery and drug repurposing, among other applications in

the medical domain. Potential applications also exist in fields such as data analysis,

information retrieval using knowledge graphs, network security, chemoinformatics

(e.g., compound analysis) ultimately benefiting relevant communities or industries.

The node embeddings of GraphReach can be augmented to graph nodes for simi-

larity computation in VerSaChI. However, this is non-trivial and could be used in

addition to the label matching. Further, GraphReach node embeddings encode the

global positioning of the nodes, which may be more helpful for graph similarity.

Approaches that use GraphReach embeddings obtained with random walks limited

to a 2-hop or 3-hop radius can be used to match for smaller subgraph patterns.

However, the target graph may need to be decomposed into multiple subgraphs for

effective matching.

7.1 Scope for Further Work

During our research, we assumed that the label distribution of graphs was uniform,

which may not hold for real-world graphs where labels are often interdependent and

do not follow a uniform distribution. For instance, in social networks, a person

is more likely to be connected to people he shares nationality with. Further, the

inter-dependence of labels is also evident in the datasets we have used, as shown

for Human in Figure 5.7; Protein-Protein Interaction networks also exhibit this

behavior. Future work could focus on developing ASM frameworks that cater to

such needs, and it would be interesting to compare their performance with existing

frameworks.
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Additionally, in the case of probabilistic graphs, ChiSeL assumed that edge prob-

abilities were independent of each other, however, in general, such is not the case

with real-world graphs. (Yuan et al., 2012) is one such work in this direction. A po-

tential direction for future research is to explore statistical significance-based ASM

approaches for graphs with a joint probability distribution. It would also be in-

sightful to study the performance of ASM methods for various types of probabilistic

graphs discussed in this study.

Another potential avenue for future research is the exploration of how position-

aware embeddings behave/ perform in GNN architectures designed for graph-level

tasks such as subgraph matching, subgraph retrieval and graph classification. Nu-

merous Graph Convolutional Network (GCN) based architectures have been devel-

oped for predicting graph similarity, primarily relying on metrics like graph edit

distance (GED) and maximum common subgraph (MCS). These models stand to

gain significant advantages by incorporating or enhancing their existing frameworks

with position-aware embeddings. Some notable such models are SIMGNN (Bai

et al., 2019) that predicts similarity using GCN embedding based pairwise node

comparison and graph-graph interaction; GMN (Li et al., 2019b) uses a cross-graph

attention-based matching mechanism that quantifies the degree to which a node in

one graph can be matched with nodes in the other graph; in another GNN model,

GENN (Wang et al., 2021), an A* search tree is used to mask nodes and predicts

similarity on the graph embeddings derived from the cached GCN node embeddings

of the remaining nodes; GraphSim (Bai et al., 2020), HGMN (Xiu et al., 2020) and

H2MN (Zhang et al., 2021) each generates similarity matrix for outputs of different

layers of a GCN to capture node similarity at different depths of the neighbor-

hood, and differ in initial inputs; the similarity matrices are fed to a CNN or fully

connected MLP for graph similarity prediction. GOTSim (Doan et al., 2021) is an-

other GNN which jointly learns over a pair of graphs by computing optimal graph

transformation cost from the similarity matrices to approximate graph similarity

score. Investigating the performance of embeddings generated by position-aware
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and other embedding models can provide valuable understanding and insights into

the effectiveness of the methods and their applicability to different graph-related

tasks. Notably, GraphReach employs fixed anchors generated via random walks.

This can potentially yield dissimilar anchor sets for similar graph pairs. This, in

turn, can result in non-alignable node embeddings. Nonetheless, the anchor selection

strategy implemented by GraphReach, grounded in the ‘most visited’ and ‘maximal

coverage’ principles, is engineered to mitigate disparities in node embeddings. Fur-

ther, it is worth emphasizing that a substantial portion of graph similarity GNN

models predominantly serve as GED and MCS solvers. It would be intriguing to

explore the potential of employing statistical significance measures as an alternative

metric for evaluating similarity. In such a situation, the model can be trained on

the statistical significance of a pair of graphs computed with methodology similar

to VerSaChI, ChiSeL or VELSET-NAGA (Dutta et al., 2017). Other avenues that

can be explored are the use of statistical significance of a pair of nodes and trans-

forming the observed vector obtained for a pair of nodes in VerSaChI into vector

representation for cross-graph matching. It holds significant promise to investigate

the potential of integrating statistical significance measures, into the neural archi-

tectures discussed earlier. Exploring these possibilities could open new avenues for

enhancing the performance and capabilities of these neural architectures.
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