
VeNoM: Approximate Subgraph Matching with Enhanced
Neighbourhood Structural Information

Shubhangi Agarwal
Indian Institute of Technology

Kanpur, India
sagarwal@cse.iitk.ac.in

Sourav Dutta
Huawei Research Center

Dublin, Ireland
sourav.dutta2@huawei.com

Arnab Bhattacharya
Indian Institute of Technology

Kanpur, India
arnabb@cse.iitk.ac.in

Abstract
Subgraph matching is an important research problem in the area
of graph mining. Over the years, researchers have made signifi-
cant headway in this direction with many state-of-the-art algorithms
aimed at providing an efficient solution for approximate subgraph
matching (ASM). Although many studies have been conducted to
compare these and highlight their respective advantages and differ-
ences, little analysis has been done on how varying the different
aspects of an ASM approach including the depth and breadth of
neighborhood affect the performance. In this paper, we propose
VeNoM, a variant of a state-of-the-art ASM algorithm VELSET,
and present different extensions of it by parameterizing the breadth
and depth of the neighborhood considered. We discuss the effects
of these neighborhood parameters and other graph parameters on
performance through empirical results over diverse datasets. We
also compare the VeNoM instances against VerSaChI, a two-hop
neighborhood similarity based ASM approach. The empirical results
suggest that increasing the depth of a neighborhood can increase the
accuracy of ASM significantly, although it requires a much longer
running time. The breadth of the neighborhood for a vertex does not
matter much as long as it is more than a single edge.

CCS Concepts
• Information systems → Data mining.

Keywords
Subgraph Similarity; Approximate Matching; Statistical Signifi-
cance; Chi-Square; Labeled Graph

ACM Reference Format:
Shubhangi Agarwal, Sourav Dutta, and Arnab Bhattacharya. 2024. VeNoM:
Approximate Subgraph Matching with Enhanced Neighbourhood Structural
Information. In 7th Joint International Conference on Data Science & Man-
agement of Data (11th ACM IKDD CODS and 29th COMAD) (CODS-
COMAD 2024), January 4–7, 2024, Bangalore, India. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3632410.3632459

1 Introduction
Graphs provide a strong foundation for a multitude of domains
with a variety of problems and applications. Over the years, various

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODS-COMAD 2024, January 4–7, 2024, Bangalore, India
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1634-8/24/01. . . $15.00
https://doi.org/10.1145/3632410.3632459

querying and mining techniques have been devised for the same. An
extremely important and popular area of research in graph mining
is subgraph querying, where the problem is to retrieve subgraphs
from a large graph that are similar to a query graph. This is useful in
many domains such as question-answering [14], criminal network
analysis [27], fraud detection [30], etc. If the end goal is retrieval
of an exact match, it is referred to as subgraph isomorphism and
is known to be NP-complete [8]. Hence, heuristic paradigms have
been explored [9, 31]. However, these algorithms are not always
scalable [16]. Furthermore, real-world graphs can be noisy and in-
complete. In such cases, an approximate match is more appropriate.

Many approximate subgraph matching (ASM) algorithms [1, 10,
17] have been developed. Different factors affect the algorithms,
such as degree of nodes, label distribution of graph, missing edges,
etc. One of the most important aspects is, perhaps, the size of the
neighborhood considered when comparing two nodes. Despite the
considerable amount of research done in approximate subgraph
querying methods, there is still room for a more in-depth study of
the effect of these factors on the subgraph querying methods.

1.1 Contributions

We propose VeNoM (Vertex Neighbor Matching), an enhancement
over VELSET [10], a state-of-the-art ASM approach for determinis-
tic graphs. To analyse the effect of size of neighborhood considered
during matching, we instantiate four versions of VeNoM, namely,
VeNoM-(1,1), VeNoM-(2,1), VeNoM-(3,1) and VeNoM-(2,2). We also
highlight that statistical significance measure assumes exact matches
to be rarer in nature; however, under certain conditions this may
not be the case, leading to lower accuracy. The experiments also
provide an understanding of the effects of different graph parameters
on performance (runtime and accuracy) of the individual instances.
This would help in tuning and comparing the approximate subgraph
matching algorithms, for example, the trade-off between a smaller
(respectively, larger) running time and lesser (respectively, higher)
matching accuracy. Extensive experiments, along with comparisons
with other state-of-the-art algorithms (VELSET [10] and VerSaChI
[1]) show that accuracy improves as the depth of the neighborhood
comparison is increased at cost of a larger runtime, while breadth
has a negligible effect as long as it is more than a single vertex, i.e.,
a single edge is the unit of comparison.

1.2 Related Work

The subgraph isomorphism problem deals with the problem of find-
ing subgraphs in the data graph which are isomorphic to the query
graph. An experimental evaluation of five subgraph isomorphism
algorithms: VF2 [9], SPath [40], TurboISO [12], BoostIso [23] and
RI [4]; is presented in [21]. Methodology, features and applications
of different subgraph isomorphism algorithms are discussed in [28].

https://orcid.org/0009-0004-4405-4833
https://orcid.org/0000-0002-8934-9166
https://orcid.org/0000-0001-7331-0788
https://doi.org/10.1145/3632410.3632459
https://doi.org/10.1145/3632410.3632459

CODS-COMAD 2024, January 4–7, 2024, Bangalore, India Shubhangi Agarwal, Sourav Dutta, and Arnab Bhattacharya

SGMatch [25] is an isomorphic subgraph matching based on graph
decomposition and set cover, solved using ILP. A subgraph-indexing
based exact matching algorithm is proposed by [33]. In [32], sub-
graph matching algorithms are compared on different aspects rather
than the absolute performance alone. A short review of various sub-
graph isomorphism algorithms is provided in [29]. A single frame-
work for subgraph isomorphism methods is given in [19]. However,
since subgraph isomorphism is computationally complex, inexact
matching is favored due to its practicality. A better understanding of
fundamentals of exact and approximate graph matching is presented
by [24]. Many approximate subgraph querying techniques have been
developed in past; SAPPER [39] is based on graph edit distance,
while an efficient graph indexing based method is presented in gIn-
dex [36]. A set-cover based approach is explored in SIGMA [22],
and APGM [15] uses a method to mine useful patterns from noisy
graph databases. NeMa [17] and SIM-T [18] are based on neigh-
borhood search while VELSET and NAGA are based on statistical
analysis [10]. PBSM [6] uses a filter and verification approach while
DAF [11] is based on DAG ordering and dynamic programming. Ver-
SaChI [1] is another ASM approach employing statistical analysis
and Chebyshev’s inequality to quantify two-hop neighborhood simi-
larity. Other notable subgraph matching techniques are TALE [34],
FG-Index [7], iGraph [13], Grafil [37], Gcoding [41], GPTree [38],
cIndex [5] and G-Finder [20]. A comprehensive survey of graph
matching is provided in [35]. Although various ASM approaches
have been explored, not much is known of impact of neighborhood
size as parameters on their performance. We attempt to bridge this
gap for a deeper understanding.

2 The Framework
We first present a succinct summary of VELSET and outline the sce-
narios where its effectiveness is limited (Sec. 2.2). We next present
our algorithm, VeNoM, which is a variant of VELSET, in Sec. 2.3.
Different extension flavors, based on depth and breadth of a neigh-
borhood, are discussed in Sec. 2.5-Sec. 2.7. Fig. 1 shows an overview
of VeNoM.

2.1 Notations.

Consider a target graph 𝐺 (𝑉𝐺 , 𝐸𝐺 ,L𝐺), with vertex set 𝑉𝐺 , set of
edges 𝐸𝐺 and a function L𝐺 : 𝑉𝐺 → Σ𝐺 that assigns labels to ver-
tices, where Σ𝐺 is a finite set of labels. A query graph𝑄 (𝑉𝑄 , 𝐸𝑄 ,L𝑄)
is searched for in 𝐺 , where 𝑉𝑄 and 𝐸𝑄 represent the set of query
vertices and edges, respectively, and L𝑄 : 𝑉𝑄 → Σ𝐺 is the query
vertex label function. We use the notation N𝐺 (𝑣) and N𝑄 (𝑞) to de-
note the set of one-hop neighbors of 𝑣 ∈ 𝑉𝐺 and 𝑞 ∈ 𝑉𝑄 , respectively.
Additionally, ⟨𝑞, 𝑣⟩ denotes a candidate vertex pair, where 𝑣 ∈ 𝑉𝐺 is
a candidate match for 𝑞 ∈ 𝑉𝑄 . A candidate match is any target vertex
𝑣 that satisfies the condition L𝑄 (𝑞) ≈ L𝐺 (𝑣), i.e., the label of the
query vertex 𝑞 is “similar” to that of 𝑣 . The similarity is based on a
user-defined similarity metric, which may be exact or approximate,
e.g., Levenshtein distance, Jaccard similarity, etc.

2.2 Overview of VELSET

VELSET is an ASM framework for deterministic labeled graphs
based on statistical analysis. To compute similarity between two
nodes, it compares the 1-hop neighborhood of the individual vertices.
For this purpose, a set of triplets is created for each vertex of target

graph and query graph. A triplet for a vertex 𝑞 ∈ 𝑉𝑄 is of the form
⟨L𝑄 (𝑞𝑖),L𝑄 (𝑞),L𝑄 (𝑞 𝑗)⟩, where 𝑞𝑖 , 𝑞 𝑗 ∈ N𝑄 (𝑞). Triplets for target
vertices are defined in the same way. The list of triplets of a vertex
represents the label distribution in its neighborhood.

In VELSET, the candidate vertex pairs are formed based on the
Jaccard similarity of the labels. To characterize the neighborhood
similarity of a vertex pair ⟨𝑞, 𝑣⟩, the triplets of 𝑞 are matched against
those of 𝑣 . Triplet matches are categorized into three categories: 𝑠0,
when no neighbor label is found to be similar; 𝑠1, when only one of
the neighbor labels is similar; and 𝑠2, when both the neighbor labels
are similar. The categories are ordered as 𝑠2 ≻ 𝑠1 ≻ 𝑠0, i.e., 𝑠2 is
preferred over 𝑠1, and 𝑠1 is preferred over 𝑠0.

To quantify the match similarity of a candidate pair, the Pear-
son’s chi-squared statistical significance test is used. It evaluates
the likelihood that the deviation of observed from expected is a
chance occurrence. Mathematically, 𝜒2 =

∑
𝑖
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
, where 𝐸𝑖

and 𝑂𝑖 denote the expected and the observed value, respectively, for
each 𝑠𝑖 . The observed value for a vertex pair ⟨𝑞, 𝑣⟩ is the count of
the categorical matches obtained by matching triplets. To compute
the expected value of the categorical matches, VELSET assumes
uniform label distribution and argues that the probability of a label
(from query triplet) not matching is (1 − 1/𝐿)𝑑𝑣 , where 𝐿 is number
of unique labels and 𝑑𝑣 is the degree of vertex 𝑣 ∈ 𝑉𝐺 . Based on this,
the probability for each of the categories is defined as:

𝑃𝑣 (𝑠0) =
(
(1 − 1/𝐿)𝑑𝑣

)2

𝑃𝑣 (𝑠1) = 2 · (1 − 1/𝐿)𝑑𝑣 ·
(
1 − (1 − 1/𝐿)𝑑𝑣

)
𝑃𝑣 (𝑠2) =

(
1 − (1 − 1/𝐿)𝑑𝑣

)2

(1)

The expected values are computed by scaling the probability
values appropriately for a vertex pair and is used in chi-squared
value computation to capture its similarity.

In the final step, highest scoring candidate pair is greedily ex-
panded until a match is found or the search space of candidate
neighbor pairs is exhausted. The interested readers can refer to the
original paper [10] for more details.

2.3 VeNoM-(2,1)

The expected value calculation in VELSET is influenced by two
factors, the number of unique labels and the degree of target graph
vertices. The intuition is that expected value for the best match
category would be very low and any vertex pair exhibiting a perfect
triplet match would thus get a higher chi-square value. We verify this
by assuming different values of 𝐿 and 𝑑𝑣 in Eq. 1. We also assume
a query vertex 𝑞 of degree 3 and enumerate four possible scenarios
based on number of labels that find a match to analyze the chi-square
trends (observed values of categories are denoted as (#𝑠0, #𝑠1, #𝑠2)):
• 𝑚0: when none of the neighbor labels match, (3, 0, 0)
• 𝑚1: when exactly one neighbor label matches, (1, 2, 0)
• 𝑚2: when exactly two of the neighbor labels match, (0, 2, 1)
• 𝑚3: when all the neighbor labels match, (0, 0, 3)

Fig. 2a shows the probability of different match categories for a
fixed number of unique labels, 𝐿 = 10 and, different degrees of the
vertex. It is observed that 𝑃𝑣 (𝑠2) < 𝑃𝑣 (𝑠0) for lower degrees of 𝑣
and, for higher degrees of the vertex, the expected values for the 𝑠2
category were higher than for 𝑠0. Due to this reason an inversion in
the chi-square values can be seen in Fig. 2b. Note that𝑚3 is the best

VeNoM: Approximate Subgraph Matching with Enhanced Neighbourhood Structural Information CODS-COMAD 2024, January 4–7, 2024, Bangalore, India

Figure 1: Generalized flowchart used in VeNoM

 0
 0.2
 0.4
 0.6
 0.8

 1

2 5 8 10 20 30 40 50

Pr
ob

ab
ili

ty

Degree

s0
s1
s2

(a) Probability trends of 𝑠0, 𝑠1
and 𝑠2

0.01

1

102

104

106

2 5 8 10 20 30 40 50

Ch
i-s

qu
ar

e

Degree

m0 m1 m2 m3

(b) 𝜒2 values for match scenar-
ios𝑚0-𝑚3 for query degree 3

Figure 2: Expected value and 𝜒2 trends for VELSET for 𝐿 = 10.

possible matching scenario for 𝑞, followed by𝑚2,𝑚1 and𝑚0 in that
order. It can be seen that for the 𝜒2 for the best scenario decreases
with increase in the input vertex degree. This essentially penalizes a
good input vertex match for having a higher number of connections.

In general, the inversion is observed when the label set size is
much smaller compared to the vertex degree (roughly, a degree to
label ratio of > 0.65). To overcome this issue, we propose VeNoM,
which modifies the expected value calculation by replacing the input
vertex degree 𝑑𝑣 in Eq. 1 with 𝑑𝑞 . This is useful since, in general,
the query graphs are small and have lower degrees. Thus, with
𝑝𝑞 = (1 − 1/𝐿)𝑑𝑞 , the probability of the match categories in VeNoM
are computed as

𝑃𝑞 (𝑠0) =
(
𝑝𝑞

)2 ; 𝑃𝑞 (𝑠1) = 2 · 𝑝𝑞 ·
(
1 − 𝑝𝑞

)
;

𝑃𝑞 (𝑠2) =
(
1 − 𝑝𝑞

)2 (2)

For ease of discussing different extensions of VeNoM in this
article, we define two terms, unit and group. Note that both the terms
are defined with respect to a vertex.

Definition 2.1. Unit. An ordered collection of neighbor labels of
a vertex which form a path of length ℎ.

Definition 2.2. Group. A set of 𝑘 units of a vertex along with its
label where the units correspond to different neighbors.

The terms unit and group help us in extending the triplet format to
extensions of VeNoM. As discussed previously, a triplet consists of
two 1-hop neighbor labels of a vertex. In the proposed terminology,
we refer to each of these neighbor labels as a unit. A triplet is then
essentially a group of two units along with the label of the vertex.
Hence, we denote the modified version of VELSET, as an instance
VeNoM-(2,1), in the VeNoM framework. The first number in the
bracket denotes the total number of units in a group, while the second
number denotes the number of vertices in a unit.

We use the same notation scheme VeNoM-(𝑘,ℎ) for extensions
and reductions of VeNoM-(2,1). Essentially, ℎ controls the depth (or
hops) of the neighborhood considered while 𝑘 controls the breadth
of its neighborhood that is considered during a match.

(a) Graph (b) VeNoM-(2,1)

(c) VeNoM-(2,2)

(d) VeNoM-(3,1) (e) VeNoM-(1,1)

Figure 3: Units and groups in different instances of VeNoM, for
vertex 𝑞1. Units are represented by dash-dotted elliptical lines
and groups by dashed rectangular lines.

2.4 Extensions

We describe two methods through which VeNoM-(2,1) can be ex-
tended to create a family of algorithms: (1) multi-hop, where the
depth of a unit is increased to include farther neighbors (Sec. 2.5);
(2) multi-neighbor (Sec. 2.6), the number of units in a group is
increased. Additionally, we also discuss how VeNoM-(2,1) can be
reduced to a single vertex unit and group version, (Sec. 2.7). Fig.
3 shows the difference between the coverage of neighborhoods in
different instances of VeNoM. The dash-dotted line depicts a unit,
while the dotted rectangular line outlines a group. For example, for
vertex 𝑞1 with label 𝐴, in VeNoM-(1,1), VeNoM-(2,1) and VeNoM-
(3,1), labels of only its one-hop neighbors are considered as units,
i.e., the size of each unit of 𝑞1 is 1. Hence, in Fig. 3 (b), (d) and
(e), 𝑞1 has three units, (⟨𝐵⟩, ⟨𝐶⟩ and ⟨𝐷⟩). While for VeNoM-(2,2)
a unit is an ordered pair of two vertex labels, ⟨1-hop vertex label,
2-hop vertex label⟩. Likewise, in Fig. 3 (c), 𝑞1 has four units, each
composed of two vertices: ⟨𝐵,𝐶⟩, ⟨𝐶, 𝐷⟩, ⟨𝐶, 𝐵⟩ and ⟨𝐷, 𝐵⟩.

CODS-COMAD 2024, January 4–7, 2024, Bangalore, India Shubhangi Agarwal, Sourav Dutta, and Arnab Bhattacharya

In a group, both VeNoM-(2,1) and VeNoM-(2,2) use two units,
VeNoM-(3,1) groups are composed of three units while groups in
VeNoM-(1,1) contain a single unit. Under VeNoM-(2,1), in Fig. 3(b),
there are three possible groups for vertex𝑞1:

〈
𝐴, ⟨𝐵⟩, ⟨𝐷⟩

〉
,
〈
𝐴, ⟨𝐵⟩, ⟨𝐶⟩

〉
and

〈
𝐴, ⟨𝐶⟩, ⟨𝐷⟩

〉
. We discuss the structure of units and groups for

other instances in the subsequent sections.

2.5 VeNoM-(2,2)

The VeNoM-(2,1) approach can be extended to ℎ-hops by increasing
the depth of the neighborhood considered for each vertex to ℎ-hops,
thereby increasing the number of entities in a unit. For brevity, we
describe the framework for 𝑘 = 2 and ℎ = 2.

In VeNoM-(2,2), a unit for 𝑞 ∈ 𝑉𝑄 is a tuple of the form ⟨L𝑄 (𝑞1
𝑖
),

L𝑄 (𝑞2
𝑗
)⟩, where 𝑞ℎ

𝑖
∈ 𝑉𝑄 is the 𝑖𝑡ℎ node exactly ℎ hops away from

𝑞. Note that 𝑞2
𝑗
∈ N𝑄 (𝑞1

𝑖
) \ {𝑞}, i.e., 𝑞2

𝑗
is a neighbor of 𝑞1

𝑖
other

than 𝑞. A similar notation is used corresponding to the target vertex.
A group in VeNoM-(2,2) is constructed for each vertex using two

of the units of the vertex and the label of the vertex itself. We restrict
a group to have units that correspond to different 1-hop neighbors of
the vertex to ensure a better structural match. A group for 𝑞 is of the
form

〈
L𝑄 (𝑞), ⟨L𝑄 (𝑞1

𝑖
),L𝑄 (𝑞2

𝑗
)⟩, ⟨L𝑄 (𝑞1

𝑘
),L𝑄 (𝑞2

𝑙
)⟩
〉
, with 𝑖 ≠ 𝑘 .

In Fig. 3 (c),𝑞1 has five valid groups:
〈
𝐴, ⟨𝐵,𝐶⟩, ⟨𝐷, 𝐵⟩

〉
,
〈
𝐴, ⟨𝐵,𝐶⟩,

⟨𝐶, 𝐵⟩
〉
,
〈
𝐴, ⟨𝐵,𝐶⟩, ⟨𝐶, 𝐷⟩

〉
,
〈
𝐴, ⟨𝐶, 𝐵⟩, ⟨𝐷, 𝐵⟩

〉
, and

〈
𝐴, ⟨𝐶, 𝐷⟩, ⟨𝐷, 𝐵⟩

〉
.

An example of an invalid group of 𝑞1 is
〈
𝐴, ⟨𝐶, 𝐵⟩, ⟨𝐶, 𝐷⟩

〉
, since

both the units ⟨𝐶, 𝐵⟩ and ⟨𝐶, 𝐷⟩, correspond to the same neighbor 𝑞4.
The units and groups are similarly constructed for the target vertices.

2.5.1 Similarity of a Vertex Pair. To compute the similarity of a
vertex pair ⟨𝑞, 𝑣⟩, we match each group of 𝑞 against an unmatched
group of 𝑣 . The similarity of two groups is defined based on the
similarity of their respective constituent units. In VeNoM-(2,2), there
are three unit-match categories possible, with 𝑢2 ≻ 𝑢1 ≻ 𝑢0:
• 𝑢2: When both the labels of the query unit have an exact match.
• 𝑢1: When exactly one of the labels of the query unit matches.
• 𝑢0: When none of the labels of the query unit find a match.

Similarly, five group-match levels, 𝑠0-𝑠4, are defined. The level
𝑠0 corresponds to the case when none of the constituent neighbor
labels of the query group find a match; 𝑠1 when exactly one of them
matches and so on. Again, to maximize overlap the group-match
categories are ordered, 𝑠4 ≻ 𝑠3 ≻ 𝑠2 ≻ 𝑠1 ≻ 𝑠0, i.e., 𝑠4 is the best
match level. The group-match categories can be defined based on
the match categories assigned to the constituent units. For instance,
a group match would be assigned to the category 𝑠0 when none of
the constituent units find a match, i.e., both the pairs are assigned
to the category 𝑢0. Similarly, a match is assigned to the category 𝑠1
when one of the two pairs results in a 𝑢1 match while the other in 𝑢0.
Mathematically,

𝑠0 : (𝑢0 ∧𝑢0) ; 𝑠1 : (𝑢0 ∧𝑢1) ; 𝑠2 : (𝑢0 ∧𝑢2) ∨ (𝑢1 ∧𝑢1) ;
𝑠3 : (𝑢1 ∧𝑢2) ; 𝑠4 : (𝑢2 ∧𝑢2)

(3)

Here, ∧ represents the AND operation and ∨ represents the OR
operation among the match events. Observe that the five events
(𝑠0-𝑠4) are exclusive and exhaustive.

To compute the similarity of a vertex pair ⟨𝑞, 𝑣⟩, we compute
its chi-square value, which calculates the deviation of the observed
counts of the symbols 𝑠0-𝑠4, from their expected counts. The ob-
served counts of these events are computed by comparing the groups

of 𝑞 against the groups of 𝑣 . A group associated with 𝑣 once matched
is not considered for match with any other group of 𝑞. The expected
counts of the group-match levels can be computed from the proba-
bility distribution of the group-match levels. We first compute the
probabilities of the unit-match levels and then using Eq. 3 compute
the probability distribution for the group-match levels.

2.5.2 Probability Distribution of Unit Symbols, 𝑃𝑞 (𝑢𝑖). The
probability that a label does not match depends on the number of
unique labels 𝐿 in the target graph. Assuming a uniform distribution
of labels, the probability that a label does not match is (1 − 1/𝐿).
Then the probability that none of the 1-hop neighbors of a query
node 𝑞 with degree 𝑑𝑞 match the label is 𝑝𝑞 = (1 − 1/𝐿)𝑑𝑞 . The
probability that the second hop label in the query unit does not find a

match is 𝛽𝑞 = (1 − 1/𝐿)𝑏𝑞 , where 𝑏𝑞 =
∑𝑑𝑞
𝑖=1 (𝑑𝑞1

𝑖
− 1) is the number

of 2-hop neighbors of 𝑞 (𝑑𝑞𝑖 is the degree of 𝑞1
𝑖
). The value 𝑑𝑞𝑖

𝑖
is

reduced by 1 to avoid counting 𝑞 as a 2-hop neighbor of itself. A unit
will be assigned the symbol 𝑢1 when exactly one of the two vertices
in the unit match. This can happen in two ways, either the 1-hop
label matches and the 2-hop label does not match or the 2-hop label
matches but the 1-hop label does not. In the first case, the 2-hop
label is absent in the neighborhood of the matching 1-hop label.
Therefore, the probability of mismatch of 2-hop label is conditioned
upon the 1-hop label, which is computed as 𝛿𝑞 = (1 − 1/𝐿)𝑎𝑣𝑔𝑑 (𝑞) ,
where 𝑎𝑣𝑔𝑑 (𝑞) =

∑𝑑𝑞
𝑖=1 (𝑑𝑞1

𝑖
− 1)/𝑑𝑞 is the average number of 2-hop

neighbors of 𝑞 per its 1-hop neighbor. Thus,

𝑃𝑞 (𝑢0) = 𝑝𝑞 · 𝛽𝑞 ; 𝑃𝑞 (𝑢1) = (𝑝𝑞 · 𝛿𝑞) + (𝑝𝑞 · 𝛽𝑞) ;

𝑃𝑞 (𝑢2) = 𝑝𝑞 · 𝛿𝑞
(4)

where 𝑝𝑞 = (1 − 𝑝𝑞), 𝛽𝑞 = (1 − 𝛽𝑞) and 𝛿𝑞 = (1 − 𝛿𝑞).

2.5.3 Probability Distribution of Group Symbols, 𝑃𝑞 (𝑠𝑖). The
conditions for symbols 𝑠1-𝑠3, as given in the Eq. 3, and can be
achieved in more than one way. For instance, in VeNoM-(2,2) for a
group to be assigned the match symbol 𝑠1, the best match found for
one of its units has to be 𝑢1 and 𝑢0 for the other. The combination
of the match categories 𝑢0 and 𝑢1 can manifest in two ways. Such
scenarios are accounted for when computing the probabilities. Con-
sidering such scenarios, the probabilities of the group symbols are
computed as,

𝑃𝑞 (𝑠0) = 𝑃𝑞 (𝑢0) · 𝑃𝑞 (𝑢0) = (𝑝𝑞 · 𝛽𝑞)2 (5a)

𝑃𝑞 (𝑠1) =2 ·𝑃𝑞 (𝑢0) ·𝑃𝑞 (𝑢1) =2 · (𝑝𝑞 ·𝛽𝑞) ·
(
(𝑝𝑞 ·𝛿𝑞) + (𝑝𝑞 ·𝛽𝑞)

)
(5b)

𝑃𝑞 (𝑠2) = 2 · (𝑝𝑞 · 𝛽𝑞) · (𝑝𝑞 · 𝛿𝑞) +
(
(𝑝𝑞 · 𝛿𝑞) + (𝑝𝑞 · 𝛽𝑞)

)2
(5c)

𝑃𝑞 (𝑠3) =2 ·𝑃𝑞 (𝑢1) ·𝑃𝑞 (𝑢2) =2 ·
(
(𝑝𝑞 ·𝛿𝑞) + (𝑝𝑞 ·𝛽𝑞)

)
· (𝑝𝑞 ·𝛿𝑞) (5d)

𝑃𝑞 (𝑠4) = 𝑃𝑞 (𝑢2) · 𝑃𝑞 (𝑢2) = (𝑝𝑞 · 𝛿𝑞)2 (5e)

Observe that both the unit-match categories and group-match
categories are exhaustive, i.e.,

∑2
𝑖=0 𝑃𝑞 (𝑢𝑖) = 1 and

∑4
𝑖=0 𝑃𝑞 (𝑠𝑖) = 1.

2.5.4 Expected Distribution of Symbols. Multiple units and groups
can be generated for a vertex, using different 1-hop and 2-hop neigh-
bors in combination. The total number of units associated with query
node 𝑞 can be computed as 𝐷𝑞 =

∑
𝑞1
𝑗
∈N𝑄 (𝑞) (𝑑𝑞1

𝑗
− 1). Again, the

degree 𝑑𝑞1
𝑗

is reduced by 1 to avoid counting 𝑞 as the 2-hop neighbor

of itself. From 𝐷𝑞 units,
(𝐷𝑞

2
)

groups can be constructed. Of these,

VeNoM: Approximate Subgraph Matching with Enhanced Neighbourhood Structural Information CODS-COMAD 2024, January 4–7, 2024, Bangalore, India

∑
𝑞1
𝑗
∈N𝑄 (𝑞)

(𝑑
𝑞1
𝑗
−1

2

)
units correspond to the same 1-hop neighbors

of 𝑞, and are, therefore, invalid. Assuming that all the groups are
independent of each other, the total number of valid groups that 𝑞

can exhibit, is computed as, 𝜂𝑞 =
(𝐷𝑞

2
)
−∑

𝑞1
𝑗
∈N𝑄 (𝑞)

(𝑑
𝑞1
𝑗
−1

2

)
.

The probability of symbols 𝑠0-𝑠4 is defined for a single query
group, and is multiplied by the total number of groups of by 𝑞 to
compute their expected values for 𝑣 ,

𝐸𝑞 (𝑠𝑖) = 𝑃𝑞 (𝑠𝑖) × 𝜂𝑞 (6)

2.6 VeNoM-(3,1)

In the multi-neighbor extension scheme, instead of matching a
deeper neighborhood structure, a broader neighborhood is matched.
In other words, units under this scheme consist of 1-hop neighbors
only, as in VeNoM-(2,1); but, the number of units in a group is in-
creased to 3. The two extension schemes can be used in conjunction
with each other, i.e., an instance of the type VeNoM-(3,2) is also
possible. However, for ease of understanding, we discuss the scheme
with ℎ = 1 and 𝑘 = 3 units in a group.

2.6.1 Unit and Group Matches. For the same graph setting, as
in Sec. 2.5, a group with 𝑞 as the focus vertex would now look like
⟨L𝑄 (𝑞),L𝑄 (𝑞1

𝑖
), L𝑄 (𝑞1

𝑗
),L𝑄 (𝑞1

𝑘
)⟩, where 𝑖 ≠ 𝑗 ≠ 𝑘, with only

four vertex labels. For instance, for the graph shown in Fig. 3(d),
there is only one group possible for vertex 𝑞1,

〈
𝐴, ⟨𝐵⟩, ⟨𝐶⟩, ⟨𝐷⟩

〉
.

Since each unit now has only one vertex, there are only two unit-
match levels possible, 𝑢0 and 𝑢1, when none or at least one matching
unit is found, respectively. As maximum matching is preferred, 𝑢1 ≻
𝑢0. Likewise, there are 4 group-match categories, 𝑠3 ≻ 𝑠2 ≻ 𝑠1 ≻ 𝑠0,
which are defined using the unit-match levels as,

𝑠0 : (𝑢0 ∧𝑢0 ∧𝑢0) ; 𝑠1 : (𝑢0 ∧𝑢0 ∧𝑢1)
𝑠2 : (𝑢0 ∧𝑢1 ∧𝑢1) ; 𝑠3 : (𝑢1 ∧𝑢1 ∧𝑢1)

(7)

Observe that there are three different ways in which the configura-
tions for the symbols 𝑠1 and 𝑠2 can be obtained.

2.6.2 Probability Distribution of Symbols. For 𝑞, the probabili-
ties for 𝑢0 and 𝑢1, now, are,

𝑃𝑞 (𝑢0) = 𝑝𝑞 ; 𝑃𝑞 (𝑢1) = 1 − 𝑝𝑞 = 𝑝𝑞 (8)

The probabilities of the group-match categories based on Eq. 7 and
8, are given by,

𝑃𝑞 (𝑠0) = 𝑃𝑞 (𝑢0) · 𝑃𝑞 (𝑢0) · 𝑃𝑞 (𝑢0) = 𝑝𝑞 · 𝑝𝑞 · 𝑝𝑞 = 𝑝3
𝑞 (9a)

𝑃𝑞 (𝑠1) = 3 · (𝑃𝑞 (𝑢0))2 · 𝑃𝑞 (𝑢1) = 3 · 𝑝2
𝑞 · 𝑝𝑞 (9b)

𝑃𝑞 (𝑠2) = 3 · 𝑃𝑞 (𝑢0) · (𝑃𝑞 (𝑢1))2 = 3 · 𝑝𝑞 · 𝑝2
𝑞 (9c)

𝑃𝑞 (𝑠3) = 𝑃𝑞 (𝑢1) · 𝑃𝑞 (𝑢1) · 𝑃𝑞 (𝑢1) = 𝑝𝑞 · 𝑝𝑞 · 𝑝𝑞 = 𝑝3
𝑞 (9d)

2.6.3 Expected Distribution of Symbols. The expected values for
each symbol is obtained by appropriately scaling their probabilities
corresponding to the number of groups exhibited by the query node 𝑞,
as shown in Eq. 6. For VeNoM-(3,1), the number of groups exhibited
by the query node 𝑞 is 𝜂𝑞 =

(𝑑𝑞
3
)
.

2.7 VeNoM-(1,1)

The VeNoM framework is flexible and the VeNoM-(2,1) version can
also be reduced to VeNoM-(1,1) configuration. In VeNoM-(1,1), the
groups consist of a single unit which is made up of only one 1-hop
neighbor. For example, in Fig. 3(e), 𝑞1 has three possible groups:

Table 1: Characteristics of real-world datasets

Dataset #Vertices #Edges #Labels

Human 4.6K 86.2K 44
HPRD 9.4K 37K 307
Flickr 80.5K 5.9M 195
PPI 12K 10.74M 2.4K〈

𝐴, ⟨𝐵⟩
〉
,
〈
𝐴, ⟨𝐶⟩

〉
and

〈
𝐴, ⟨𝐷⟩

〉
. Once again, only two unit-match

levels are defined, 𝑢0 and 𝑢1, with 𝑢1 ≻ 𝑢0, as in Eq. 8.
Now, since there is only a single unit in a group, unlike previous

algorithms, the group-match categories become synonymous with
the unit-match levels. To clarify, there are now only two group-match
levels: 𝑠0 and 𝑠1, with 𝑠1 ≻ 𝑠0. The category 𝑠0 is assigned when the
unit results in a complete mismatch, i.e, when the single constituent
vertex label of the unit does not match. While 𝑠1 denotes the case
when the unit is a complete match, i.e., the single constituent vertex
label finds a match. Consequently, the group-match probabilities are
the same as the unit-match level.

𝑃𝑞 (𝑠0) = 𝑃𝑞 (𝑢0) ; 𝑃𝑞 (𝑠1) = 𝑃𝑞 (𝑢1) (10)

For computing the expected distribution of the group-match cat-
egories, the same process is followed as given in Eq. 6. For the
reduced case, the value of 𝜂𝑞 = 𝑑𝑞 .

2.8 Complexity Analysis

Assume a target graph 𝐺 with 𝑛𝐺 vertices and 𝐿 unique labels uni-
formly distributed and a query graph 𝑄 with 𝑛𝑄 nodes and average
degree 𝑑𝑄 . The time complexity for matching a single query group
is𝑂 (1) with efficient target graph indexing. For a query node with𝑚
groups and 𝑛𝐺/𝐿 possible candidate target vertices, the complexity
of finding the best match is 𝑂 (𝑚 · 𝑛𝐺/𝐿). The computation of 𝑚
can be broken down to the number of units possible with depth ℎ
and 𝑘 units in a group. The number of units possible with depth
ℎ is of the order 𝑂 (𝑑ℎ

𝑄
). The number of possible groups is then

approximately
(𝑑ℎ

𝑄

𝑘

)
which is of the order 𝑂 (𝑑ℎ ·𝑘

𝑄
). Therefore, the

complexity of matching the query graph 𝑄 with VeNoM-(𝑘, ℎ) is
roughly 𝑂 (𝑛𝑄 · 𝑑ℎ ·𝑘

𝑄
· 𝑛𝐺/𝐿). Since query graphs are typically quite

small, 𝑑𝑄 is a constant. The time complexity of the entire algorithm
is, thus, effectively 𝑂 (𝑛𝑄 · 𝑛𝐺/𝐿).

3 Experimental Results
In this section, we analyze the performance of the extension schemes
along with the base algorithm on various graph invariants.

3.1 Experimental Setup

All the algorithms were implemented in C++. The experiments
were performed on an Intel(R) Xeon(R) 2.6GHz CPU E5-2697v3
processor with 504GB RAM running CentOS Linux 7.9.2009.1

3.1.1 Benchmarks. (1) VELSET [10], since it is the algorithm
that we extend, and it also outperformed the then state-of-the-art
algorithms NeMa [17] and SIM-T [18]; (2) VerSaChI [1], which is a
recent ASM framework that outperformed VELSET. Therefore, we
compare against these two algorithms only.

3.1.2 Real Datasets. The Flickr [26] dataset is a large social net-
work based on user interactions, while PPI, Human and HPRD
[3] are biological networks with protein-protein interactions. PPI

1The source code is available at https://github.com/shubhangiat/VeNoM.

https://github.com/shubhangiat/VeNoM

CODS-COMAD 2024, January 4–7, 2024, Bangalore, India Shubhangi Agarwal, Sourav Dutta, and Arnab Bhattacharya

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

VELSET
VerSaChI

10-410-310-210-1100101

exact nEAdd nEDel nLabel nVAdd nVDel

Ru
n

Ti
m

e
(s

)

Query Type

(a) Human

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

VELSET
VerSaChI

10-4
10-3
10-2
10-1

exact nEAdd nEDel nLabel nVAdd nVDel

Ru
n

Ti
m

e
(s

)

Query Type

(b) HPRD

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

VELSET
VerSaChI

10-410-310-210-1100101

exact nEAdd nEDel nLabel nVAdd nVDel

Ru
n

Ti
m

e
(s

)

Query Type

(c) Flickr

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

VELSET
VerSaChI

10-4
10-2
100
102

exact nEAdd nEDel nLabel nVAdd nVDel

Ru
n

Ti
m

e
(s

)

Query Type

(d) PPI

Figure 4: Performance on real-world graphs (runtime in log-scale)
is a randomly extracted small graph from STRING DB (version-
10-5.string-db.org). Table 1 summarizes the characteristics of the
datasets (including the ratio of average degree of the graph to its
label set size).

3.1.3 Synthetic Datasets. We chose the Barabási-Albert (BA)
graphs to evaluate scalability of instances of VeNoM, as it is known
to be scale-free and approximate real-world graphs [2]. It has two
parameters: the number of vertices (𝑛) and the growth factor (𝑚),
i.e., the number of edges linking a new node to the existing graph.
We introduce a third parameter, the number of unique vertex labels
(𝑙). The default values are set to 𝑛 = 100𝐾 ,𝑚 = 50 and 𝑙 = 150.

3.1.4 Query Generation. For our experiments, queries of size
9 were created by randomly extracting subgraphs from real-world
graph datasets starting with a randomly selected seed vertex. As
these queries have an exact match available, we name this query
set exact. Further, we introduce noises in the exact query set to
generate different types of noisy queries, (i) addition and deletion
of edges (nEAdd and nEDel, respectively), (ii) alteration of vertex
label (nLabel) and (iii) addition and deletion of vertices (nVAdd and
nVDel, respectively). The maximum number of perturbations for any
exact query graph was capped at 2 while ensuring the connectivity
of the query graph. Each query set consisted of 40 instances.

For the synthetic graph experiments, different query sets of size 9
were generated in a similar fashion. For the default synthetic graph,
additional queries of sizes 5, 7, 11 and 13, were also created to study
the effect of varying query size on different instances of VeNoM.

3.1.5 Metrics. We evaluate the performance of the four algorithms
on the following metrics:
(1) Maximum mean accuracy: We define accuracy as the ratio of

the number of edges in the answer subgraph that match the
query subgraph to the number of edges in the query subgraph.
To evaluate the quality of the matching subgraphs returned by
the algorithms, we choose the answer subgraph with maximum
accuracy among the top-10 highest 𝜒2 value subgraphs. The av-
erage of the maximum accuracy over each query set is reported.
We refer to this as accuracy in this paper for simplicity.

(2) Average running time: To evaluate the efficiency of the algo-
rithms, the time taken to return the top-10 answer subgraphs is
recorded for each query. We compare the running times averaged
over a query set, referred to as runtime.

3.2 Real-World Graphs

Fig. 4 shows the performance of instances of VeNoM and bench-
mark algorithms. The accuracy of VELSET was lowest and can be
attributed to the apparent inversion of the chi-square values from the
expected trend. The improved performance demonstrated by VeNoM
indicates that the proposed remodeling was effective.

Overall, VeNoM-(2,2) performed slightly better than VeNoM-
(2,1) or was comparable. This improvement can be attributed to the
two-hop neighborhood match done in VeNoM-(2,2) giving it a look-
ahead advantage over VeNoM-(2,1) and VeNoM-(3,1). At the same
time, VeNoM-(1,1) performed slightly worse than VeNoM-(2,1), as
it compares only one neighbor at a time, which reduced its capacity
to capture the neighborhood topological similarities. However, for
PPI it is observed that VeNoM-(3,1) performed marginally better
than VeNoM-(2,2). We explore this further in Sec. 3.3. In general,
VerSaChI exhibited relatively higher accuracy which can be due to
the two-hop neighborhood overlap-based similarity. However, the
run-time of VerSaChI was 5 to 10 times more than that of VeNoM-
(𝑥 , 1) (𝑥 ∈ {1, 2, 3}). Due to the depth of the neighbors considered
VeNoM-(2,2) showed a higher runtime. As the depth is increased,
the number of possible groups increases multi-fold, which adds to
the complexity of matching. VeNoM-(2,1) and VeNoM-(3,1) were
comparable in terms of both accuracy and runtime.

In general, a significant drop was observed in the accuracy for the
nLabel query set for all the algorithms. This can be attributed to the
underlying semantic relationship between the node labels. During
the generation of noisy label queries, the label of some of the vertices
was randomly changed to another label from the label vocabulary of
the dataset. This did not conform to the underlying label distribution
and topology of the real graph, which resulted in partial matches.

The comparison on real graphs highlights that an edge based
neighborhood match, i.e., one vertex at a time, as is the case in
VeNoM-(1,1) is insufficient. However, there is no significant im-
provement when number of vertices being compared is increased
from two (VeNoM-(2,1)) to three (VeNoM-(3,1)). Notably, there
is no overhead in runtime in a multi-neighbor extension. Between
VerSaChI and VeNoM-(2,2), the former is a more holistic approach
and performs better, suggesting that as the depth of the neighborhood
being compared increases, a more comprehensive view of the neigh-
borhood may be required, by increasing the neighborhood span, for
a better comparison.

3.3 VeNoM-(2,2) vs VeNoM-(3,1)

We further analyze the performance difference between VeNoM-
(2,2) and VeNoM-(3,1) using toy examples. We choose a complete
and labeled graph of size 10 and queries of size 4 (Fig. 5). For query
graph 1, (Fig. 5(a)) no performance difference was observed among
the algorithms. However, for query graph 2 (Fig. 5(b)), VeNoM-(3,1)
exhibited a larger accuracy. On further analysis, it was found this
is due to the difference in the selection of candidate pair, based on
their 𝜒2 values (as shown in Fig. 5). Even though the candidate
pair ⟨ q1, v9 ⟩ is a better match accuracy-wise, the vertex pair ⟨
q3, v9⟩ achieves a higher 𝜒2 value for all instances of VeNoM but
VeNoM-(3,1). For VeNoM-(3,1), both the above mentioned vertex

version-10-5.string-db.org
version-10-5.string-db.org

VeNoM: Approximate Subgraph Matching with Enhanced Neighbourhood Structural Information CODS-COMAD 2024, January 4–7, 2024, Bangalore, India

(a) Target Graph

(b) Query Graph 1 (c) Query Graph 2

(d) Query graph 3

Query Graph 2
Algorithms Best Match Acc. 𝜒2 values

⟨q1, v9⟩ ⟨q3, v9⟩
VeNoM-(2,2) ⟨q0,v0 ⟩, ⟨q2,v7 ⟩, ⟨q3,v9 ⟩ 0.40 1.064 1.074

VeNoM-(3,1) ⟨q0,v0 ⟩, ⟨q1,v9 ⟩, ⟨q2,v7 ⟩ 0.60 1.272 1.272

VeNoM-(2,1) ⟨q0,v0 ⟩, ⟨q2,v7 ⟩, ⟨q3,v9 ⟩ 0.40 0.871 1.025

VeNoM-(1,1) ⟨q0,v0 ⟩, ⟨q2,v7 ⟩, ⟨q3,v9 ⟩ 0.40 1.600 1.999

Query Graph 3

Algorithms 2𝑛𝑑 and; 3𝑟𝑑 Best Match 2𝑛𝑑 Best
Acc.

3𝑟𝑑 Best
Acc.

VeNoM-(2,2) ⟨q4, v7 ⟩, ⟨q5, v2 ⟩; ⟨q4, 6 ⟩, ⟨q5, 3 ⟩ 0.2 0.2

VeNoM-(3,1) ⟨ q0, v7 ⟩; ⟨ q5, v2 ⟩ 0.0 0.0

VeNoM-(2,1) ⟨ q0, v7 ⟩; ⟨ q5, v2 ⟩ 0.0 0.0

VeNoM-(1,1) ⟨ q4, v7 ⟩, ⟨ q5, v5 ⟩; ⟨ q5, v2 ⟩ 0.2 0.0

Figure 5: Performance comparison of different instances of VeNoM on sample target and query graphs.

pairs exhibit same statistical significance which gives it a chance
to select ⟨ q1, v9 ⟩ over ⟨ q3, v9 ⟩. For such cases VeNoM-(3,1)
may be more desirable than VeNoM-(2,2), as the latter also has a
higher runtime. All the algorithms reported a partial match with
0.6 accuracy as the best match for the query graph 3 (Fig. 5(c)).
However, the overall performance for VeNoM-(2,2) was better with
more partial matches in top-3 answers, suggesting that it has the
ability to find subgraphs in scenarios where other instances may fail.

3.4 Parameter Study

We study the effects of various graph parameters on the performance
of the algorithms.

3.4.1 Graph Size. A linear increase in runtime was seen for all
the algorithms with increase in the number of vertices (Fig. 6a).
VeNoM-(2,2) is the most accurate as compared to its peers which is
due to its ability to match neighbors 2-hops away. The performance
of VeNoM-(2,1) and VeNoM-(3,1) remain similar with VeNoM-(1,1)
being slightly inferior to them due to its lack of coverage. A higher
runtime was also reported for VeNoM-(2,2) as with increase in the
graph size, the number of candidate match comparison increases.

3.4.2 Average Graph Degree. The parameter𝑚 (in BA graphs)
is directly proportional to the degree of the graph generated. For all
the algorithms, a linear increase in runtime was seen with increase
in the average degree of the graph (Fig. 6b). Noticeably, time taken
by VeNoM-(3,1) was observed to be marginally lesser than that of
VeNoM-(2,2). This is because the number of groups exhibited by
VeNoM-(3,1) is lesser than VeNoM-(2,1), implying lesser number of
groups to match, which results in a lower runtime. The lower runtime
of VerSaChI than VeNoM-(2,2), in the previous section (§3.2) can be
attributed to this factor as well. Once again, VeNoM-(2,2) achieved a
higher accuracy than others while VeNoM-(1,1) achieved the lowest
accuracy for lower graph degrees.

3.4.3 Label Set Size. As the size of the label set was increased, a
rapid decrease in the runtime was observed (Fig. 6c). This is a direct
consequence of the decrease in the number of candidate matches
caused due to label diversity. Another outcome of this effect is an
increase in the accuracy of the algorithms. All the algorithms showed

a significant rise in accuracy from label set size 50 to 150. This shows
that the algorithms are able to distinguish between vertex pairs better
after a certain threshold of vertex-per-label ratio is crossed. Another
contributing factor towards a lower accuracy, for smaller label sets, is
the degree to label ratio, as discussed in Sec. 2.3. Although, VeNoM
takes care of inversion in 𝜒2 values by replacing the target vertex
degree with that of the query node, but a graph universe with a
very small label set may still lead to value inversion. Once again,
VeNoM-(2,2) reached the saturation accuracy faster by utilizing the
look-ahead advantage for a better performance.

3.4.4 Query Size. With an increase in the number of vertices in
the query graph, a near exponential increase is observed in runtime
(Fig. 6d). This is because it increases the number of groups in a query.
The effect of this is more pronounced in VeNoM-(2,2) due to the
increase in depth of the neighborhood considered. However, VeNoM-
(2,2) still outperforms the other VeNoM instances, which show a
decrease in accuracy with an increase in the query size. VeNoM-(2,2)
shows negligible performance change for small query sizes and a
slightly higher accuracy for larger queries. This suggests that with
higher number of connections, VeNoM-(2,2) is able to create more
meaningful groups, making it more robust towards increase in query
size. On the other hand, VeNoM-(1,1), with a single vertex per group,
suffered heavily and achieved the least accuracy.

3.4.5 Query Degree. To better understand the effects of query
degree, the queries of size 9 were binned into three buckets based
on average degree of the query graphs: [3.75, 4.75), [4.75, 5.75) and
[5.75, 6.75). With increase in query complexity, no significant change
in runtime was observed in any of the VeNoM instances (Fig. 6e).
However, VeNoM-(2,2) exhibited a steady increase in accuracy and
maintained a significant improvement over its counterparts. Mean-
while, the accuracy for VeNoM-(2,1), VeNoM-(3,1) and VeNoM-
(1,1) dropped as the average degree of the query graph was increased.
The rate of accuracy drop was slightly lower in VeNoM-(2,1) and
VeNoM-(3,1), than in VeNoM-(1,1), suggesting slight comparative
robustness. The increase in accuracy of VeNoM-(2,2) suggests that
with more neighbors, non-trivial groups for a query node could be
created, which captured the neighborhood similarity better. Observe
that the ratio of the query degree to the label is <0.65 at all times.

CODS-COMAD 2024, January 4–7, 2024, Bangalore, India Shubhangi Agarwal, Sourav Dutta, and Arnab Bhattacharya

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

10-2
10-1

1
101
102
103

10-3
2K 10K 50K 250K 1000K

Ru
n

Ti
m

e
(s

)

Number of Vertices

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

(a) Vertex scaling (𝑚 = 50, 𝑙 = 150)

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

10-2
10-1

1
101
102

10-3
 4 10 40 100 250

Ru
n

Ti
m

e
(s

)

Average Degree

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

(b) Degree scaling (|𝑉 | = 100𝐾, 𝑙 = 150)

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

10-2
10-1

1
101
102
103
104

 2 5 10 25 50 150 500 5K

Ru
n

Ti
m

e
(s

)

Number of Labels

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

(c) Label scaling (|𝑉 | = 100𝐾,𝑚 = 50)

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

 0.1
 0.7

 5
 25

 125

 5 7 9 11 13

Ru
n

Ti
m

e
(s

)

Query Size

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

(d) Query size (|𝑉 | = 100𝐾,𝑚 = 50, 𝑙 = 150)

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

10-2
10-1

1
101
102

10-3
[3.75, 4.75) [4.75, 5.75) [5.75, 6.75)

Ru
n

Ti
m

e
(s

)

Average Degree

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

(e) Query degree (|𝑉 | =100𝐾,𝑚=40, 𝑙 = 150)

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

VeNoM-(2,2)
VeNoM-(3,1)

VeNoM-(2,1)
VeNoM-(1,1)

 0.01
 0.1

 1
 6

 25

exact nEAdd nEDel nLabel nVAdd nVDel

Ru
n

Ti
m

e
(s

)

Query Type

(f) Noisy Queries (|𝑉 | =100𝐾,𝑚=50, 𝑙 = 150)

Figure 6: Performance evaluation on Barabási-Albert graphs (runtime in log-scale)

1 6 11 16 21 26 31 36 41

1
6

11
16

21
26

31
36

41

0.0

2K

5K

8K

10K

12K

15K

(a) Human

1 7 13 19 25 31 37 43 49

1
7

13
19

25
31

37
43

49 50

75

100

125

150

175

(b) BA graph (|𝑉 | =5𝐾,𝑚=25, 𝑙 =50)

Figure 7: Heat-map of edge-frequency between labels

3.4.6 Noisy Queries. In experiments with noisy queries, VeNoM-
(2,2) performed significantly better than both VeNoM-(2,1) and
VeNoM-(3,1), while VeNoM-(1,1) on an average reported a relatively
lower accuracy (Fig. 6f). In general, accuracy for nEDel and nVDel
was more than that for nEAdd and nVAdd, respectively. This is
because in the event of deletion a perfect match is still guaranteed to
exist, while the same cannot be when an edge or a vertex is added to
the query. This aligns with the trend seen in the real-world graphs
in Fig. 4. However, in contrast to the performance on real-world
graph datasets, negligible accuracy drop was observed for nLabel
query set in BA graphs. As hypothesized in §3.2, this is caused due
to the absence of underlying semantic relations of vertex labels in
synthetic graphs. In synthetic graphs, the labels were independent
of each other and there was no semantic relationship between them.
Thus, complete matches could be found for the nLabel queries as
well. In real graphs, however, labels of vertices that have connections
between them may not be random, and, the connections among labels
may form a community. We further analyzed heat-maps Fig. 7 of
frequency of connections between different labels for the dataset
Human and a similar sized BA graph (|𝑉 | = 5𝐾,𝑚 = 25, 𝑙 = 50).
It was observed that for the Human graph the connections were
concentrated among a handful of labels, while in the BA graph
the edges were evenly spread over all label combinations. This
reinforced our theory of existence of underlying semantic relations
among labels in real-world graphs.

3.5 Discussion

Overall, our experiments depicted the following trends:
• Incorporating multi-hop information offers significant improve-

ments in accuracy, as shown by VeNoM-(2,2) and VerSaChI. This
is potentially due to the extra neighborhood information available
during comparison. However, this impacts the runtime negatively.

• The strategy of aggregating multi-neighbor information has lim-
ited improvement in accuracy. At one-hop level neighborhood
match, a single edge based comparison is inadequate and increas-
ing it to two neighboring nodes results in an improvement. How-
ever, there is no significant improvement when the capacity is
increased to three neighboring vertices from two.

• Performance comparison between VeNoM-(2,2) and VerSaChI
suggests that comparison of only two units at a time at two-hop
level is insufficient and a larger view of the neighborhood is
required for increased accuracy. Further, the number of groups
potentially affects the run time of the algorithm, and decreases
with larger group size for target graphs with a lower average
degree. This causes a slight reduction in the runtime.
The above trade-offs can be considered while subgraph matching

algorithms for application-specific requirements are designed.

4 Conclusions

VeNoM, a variant framework for VELSET, is extended to four
different instances in a systematic manner, by modulating the depth
and breadth of the neighborhood being considered for subgraph
match. The experimental analysis shows the effect of both depth
and breadth of neighborhood considered on the performance of
different algorithms. We also demonstrated that under certain cases
the null hypothesis for the statistical significance measure may not
hold resulting in lower accuracy. Results with benchmark algorithms
show that an integrated approach with breadth and depth of the
neighborhood performs better.

In future, other algorithms can be analyzed similarly and a com-
mon framework for ASM can be identified.

VeNoM: Approximate Subgraph Matching with Enhanced Neighbourhood Structural Information CODS-COMAD 2024, January 4–7, 2024, Bangalore, India

References
[1] Shubhangi Agarwal, Sourav Dutta, and Arnab Bhattacharya. 2021. VerSaChI:

Finding Statistically Significant Subgraph Matches using Chebyshev’s Inequality.
In CIKM. ACM, 2812–2816.

[2] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex
networks. Rev. Mod. Phys. 74 (Jan 2002), 47–97. Issue 1.

[3] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. 2016. Efficient Subgraph Matching
by Postponing Cartesian Products. In SIGMOD. 1199–1214.

[4] Vincenzo Bonnici and Rosalba Giugno. 2016. On the variable ordering in Sub-
graph Isomorphism Algorithms. IEEE/ACM transactions on computational biol-
ogy and bioinformatics 14, 1 (2016), 193–203.

[5] Chen Chen, Xifeng Yan, S Yu Philip, Jiawei Han, Dong Qing Zhang, and Xiaohui
Gu. 2007. Towards Graph Containment Search and Indexing. In PVLDB. 926–
937.

[6] Wei Chen, Jia Liu, Ziyang Chen, Xian Tang, and Kaiyu Li. 2018. PBSM: An
efficient Top-K subgraph matching algorithm. International Journal of Pattern
Recognition and Artificial Intelligence 32, 06 (2018), 1850020.

[7] James Cheng, Yiping Ke, Wilfred Ng, and An Lu. 2007. FG-Index: Towards
Verification-free Query Processing on Graph Databases. In SIGMOD. 857–872.

[8] Stephen A. Cook. 1971. The Complexity of Theorem-Proving Procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Computing
(Shaker Heights, Ohio, USA) (STOC ’71). 8 pages.

[9] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A
(sub) graph isomorphism algorithm for matching large graphs. IEEE transactions
on pattern analysis and machine intelligence 26, 10 (2004), 1367–1372.

[10] Sourav Dutta, Pratik Nayek, and Arnab Bhattacharya. 2017. Neighbor-aware
search for approximate labeled graph matching using the chi-square statistics. In
WWW’17. 1281–1290.

[11] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin Han.
2019. Efficient Subgraph Matching: Harmonizing dynamic programming, adaptive
matching order, and failing set together. In Proceedings of the 2019 International
Conference on Management of Data. 1429–1446.

[12] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: towards
ultrafast and robust subgraph isomorphism search in large graph databases. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data. 337–348.

[13] Wook Shin Han, Jinsoo Lee, Minh Duc Pham, and Jeffrey Xu Yu. 2010. iGraph: A
Framework for Comparisons of Disk-based Graph Indexing Techniques. PVLDB
3, 1-2 (2010), 449–459.

[14] Sen Hu, Lei Zou, Jeffrey Xu Yu, Haixun Wang, and Dongyan Zhao. 2018. An-
swering Natural Language Questions by Subgraph Matching over Knowledge
Graphs. IEEE TKDE 30, 5 (2018), 824–837.

[15] Yi Jia, Jintao Zhang, and Jun Huan. 2011. An Efficient Graph-mining Method
for Complicated and Noisy Data with Real-world Applications. Knowledge and
Information Systems 28, 2 (2011), 423–447.

[16] Foteini Katsarou, Nikos Ntarmos, and Peter Triantafillou. 2015. Performance and
Scalability of Indexed Subgraph Query Processing Methods. Proc. VLDB Endow.
8, 12 (Aug 2015), 12 pages.

[17] Arijit Khan, Yinghui Wu, Charu C. Aggarwal, and Xifeng Yan. 2013. NeMa:
Fast Graph Search with Label Similarity. Proc. VLDB Endow. 6, 3 (Jan. 2013),
12 pages.

[18] Segla Kpodjedo, Philippe Galinier, and Giulio Antoniol. 2014. Using local similar-
ity measures to efficiently address approximate graph matching. Discrete Applied
Mathematics 164 (2014), 161–177.

[19] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee. 2012. An
In-Depth Comparison of Subgraph Isomorphism Algorithms in Graph Databases.
Proc. VLDB Endow. 6, 2 (Dec 2012), 12 pages.

[20] Lihui Liu, Boxin Du, Hanghang Tong, et al. 2019. G-Finder: Approximate
Attributed Subgraph Matching. In 2019 IEEE International Conference on Big

Data (Big Data). IEEE, 513–522.
[21] Tinghuai Ma, Siyang Yu, Jie Cao, Yuan Tian, Abdullah Al-Dhelaan, and Mznah Al-

Rodhaan. 2018. A comparative study of subgraph matching isomorphic methods
in social networks. IEEE Access 6 (2018).

[22] Misael Mongiovi, Raffaele Di Natale, Rosalba Guigno, Alfredo Pulvirenti, Alfredo
Ferro, and Roded Sharan. 2010. SIGMA: A Set-Cover-Based Inexact Graph
Matching Algo. Journal of Bioinformatics and Computational Biology 8, 2 (2010),
199–218.

[23] Xuguang Ren and Junhu Wang. 2015. Exploiting vertex relationships in speeding
up subgraph isomorphism over large graphs. Proceedings of the VLDB Endowment
8, 5 (2015), 617–628.

[24] Kaspar Riesen, Xiaoyi Jiang, and Horst Bunke. 2010. Exact and Inexact Graph
Matching: Methodology and Applications. Managing and Mining Graph Data
(2010), 217–247.

[25] Carlos R Rivero and Hasan M Jamil. 2017. Efficient and scalable labeled subgraph
matching using SGMatch. Knowledge and Information Systems 51, 1 (2017),
61–87.

[26] R. A. Rossi and N. K. Ahmed. 2015. The Network Data Repository with Interactive
Graph Analytics and Visualization. In AAAI. 4292–4293.

[27] Theyvaa Sangkaran, Azween Abdullah, and NZ Jhanjhi. 2020. Community
Detection Based on Isomorphic Subgraph Analytics in Criminal Network. IJCSNS
20, 5 (2020), 94.

[28] Theyvaa Sangkaran, Azween Abdullah, NZ JhanJhi, and Mahadevan Suprama-
niam. 2019. Survey on isomorphic graph algorithms for graph analytics. IJCSNS
19, 1 (2019), 85–92.

[29] Ms Rachna Somkunwar and Vinod Moreshwar Vaze. 2017. Subgraph Isomorphism
Algorithms for Matching Graphs: A Survey. IJETT 1, 1 (2017).

[30] Junshuai Song, Xiaoru Qu, Zehong Hu, Zhao Li, Jun Gao, and Ji Zhang. 2021.
A subgraph-based knowledge reasoning method for collective fraud detection in
E-commerce. Neurocomputing 461 (2021), 587–597.

[31] Shixuan Sun and Qiong Luo. 2019. Scaling Up Subgraph Query Processing with
Efficient Subgraph Matching. In ICDE. 220–231.

[32] Shixuan Sun and Qiong Luo. 2020. In-Memory Subgraph Matching: An In-Depth
Study. In ICMD (Portland, OR, USA) (SIGMOD). 16 pages.

[33] Yunhao Sun, Guanyu Li, Jingjing Du, Bo Ning, and Heng Chen. 2022. A subgraph
matching algorithm based on subgraph index for knowledge graph. Frontiers of
Computer Science 16 (2022), 1–18.

[34] Yuanyuan Tian and Jignesh M Patel. 2008. Tale: A tool for approximate large
graph matching. In 2008 IEEE 24th International Conference on Data Engineering.
IEEE, 963–972.

[35] Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha, and Xi-
aokang Yang. 2016. A Short Survey of Recent Advances in Graph Matching. In
ICMR (New York, New York, USA). 167–174.

[36] Xifeng Yan, Philip S. Yu, and Jiawei Han. 2005. Graph Indexing Based on
Discriminative Frequent Structure Analysis. Transactions on Database Systems
30, 4 (2005), 960–993.

[37] Xifeng Yan, Philip S. Yu, and Jiawei Han. 2005. Substructure Similarity Search
in Graph Databases. In SIGMOD. 766–777.

[38] Shuo Zhang, Jianzhong Li, Hong Gao, and Zhaonian Zou. 2009. A Novel Ap-
proach for Efficient Supergraph Query Processing on Graph Databases. In Inter-
national Conference on Extending Database Technology (EDBT). 204–215.

[39] Shijie Zhang, Jiong Yang, and Wei Jin. 2010. SAPPER: Subgraph Indexing and
Approximate Matching in Large Graphs. PVLDB 3, 1-2 (2010), 1185–1194.

[40] Peixiang Zhao and Jiawei Han. 2010. On graph query optimization in large
networks. Proceedings of the VLDB Endowment 3, 1-2 (2010), 340–351.

[41] Lei Zou, Lei Chen, Jeffrey Xu Yu, and Yansheng Lu. 2008. A Novel Spectral
Coding in a Large Graph Database. In International Conference on Extending
Database Technology (EDBT). 181–192.

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 The Framework
	2.1 Notations.
	2.2 Overview of VELSET
	2.3 VeNoM-(2,1)
	2.4 Extensions
	2.5 VeNoM-(2,2)
	2.6 VeNoM-(3,1)
	2.7 VeNoM-(1,1)
	2.8 Complexity Analysis

	3 Experimental Results
	3.1 Experimental Setup
	3.2 Real-World Graphs
	3.3 VeNoM-(2,2) vs VeNoM-(3,1)
	3.4 Parameter Study
	3.5 Discussion

	4 Conclusions
	References

